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Visual dexterity: In-hand reorientation of novel and
complex object shapes
Tao Chen1,2, Megha Tippur2, Siyang Wu3, Vikash Kumar4, Edward Adelson2, Pulkit Agrawal1,2,5*

In-hand object reorientation is necessary for performingmany dexterousmanipulation tasks, such as tool use in
less structured environments, which remain beyond the reach of current robots. Prior works built reorientation
systems assuming one ormany of the following conditions: reorienting only specific objects with simple shapes,
limited range of reorientation, slow or quasi-static manipulation, simulation-only results, the need for special-
ized and costly sensor suites, and other constraints that make the system infeasible for real-world deployment.
We present a general object reorientation controller that does not make these assumptions. It uses readings
from a single commodity depth camera to dynamically reorient complex and new object shapes by any rotation
in real time, with the median reorientation time being close to 7 seconds. The controller was trained using re-
inforcement learning in simulation and evaluated in the real world on new object shapes not used for training,
including the most challenging scenario of reorienting objects held in the air by a downward-facing hand that
must counteract gravity during reorientation. Our hardware platform only used open-source components that
cost less than 5000 dollars. Althoughwe demonstrate the ability to overcome assumptions in prior work, there is
ample scope for improving absolute performance. For instance, the challenging duck-shaped object not used
for training was dropped in 56% of the trials. When it was not dropped, our controller reoriented the object
within 0.4 radians (23°) 75% of the time.
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INTRODUCTION
The human hand’s dexterity is vital to a wide range of daily tasks,
such as rearranging objects, loading dishes in a dishwasher, fasten-
ing bolts, cutting vegetables, and other forms of tool use both inside
and outside households. Despite a long-standing interest in creating
similarly capable robotic systems, current robots are far behind in
their versatility, dexterity, and robustness. In-hand object reorien-
tation, illustrated in Fig. 1, is a specific dexterous manipulation
problem where the goal is to manipulate a handheld object from
an arbitrary initial orientation to an arbitrary target orientation
(1–7). Object reorientation occupies a special place in manipulation
because it is a precursor to flexible tool use. After picking a tool, the
robot must orient the tool in an appropriate configuration to use it.
For example, a screwdriver can only be used if its head is aligned
with the top of the screw. Object reorientation is, therefore, not
only a litmus test for dexterity but also an enabler for many down-
stream manipulation tasks.

A reorientation system ready for the real world should satisfy
multiple criteria: It should be able to reorient objects into any ori-
entation, generalize to new objects, and operate in real time using
data from commodity sensors. Some seemingly benign setup
choices canmake the system impractical for real-world deployment.
For instance, consider the choice of placing multiple cameras
around the workspace to reduce occlusion in viewing the object
being manipulated (8, 9). For a mobile manipulator, such camera
placements are impractical. Similarly, performing reorientation

under the assumption that the hand is below the object (upward-
facing hand configuration) (8–10) instead of the hand holding the
object from the top (downward-facing hand configuration) is much
easier. With a downward-facing hand, the hand must manipulate
the object while simultaneously counteracting gravity. Small
errors in finger motion can result in the object falling. The
upward-facing hand assumption makes control easier, but it
limits the downstream use of the reorientation skill in many tool-
use applications.

Even without real-world setup constraints, object reorientation
is challenging because it requires coordinated movement between
multiple fingers, resulting in a high-dimensional control space.
The robot must control the amount of applied force, when to
apply it, and where the fingers should make and break contact
with the object. The combination of continuous and discrete deci-
sions leads to a challenging continuous-discrete optimization
problem that is often computationally intractable. For computa-
tional feasibility, most prior works constrain manipulation to
simple convex shapes, such as polygons or cylinders (6, 8, 11–22).
Other simplifying assumptions include designing specific move-
ment patterns of fingers (18, 23), assuming that fingers never
make and break contact with the object (15, 24), hand being in an
upward-facing configuration (5, 8, 10), or the manipulation being
quasi-static (23, 25). Such assumptions restrict the applicability of
reorientation to a limited set of objects, scenarios, or orientations
(for example, along only a single axis).

Complementary to the control problem is the issue of measuring
the state information the controller requires, such as the object’s
pose, surface friction, and whether the finger is in contact with
the object. Touch sensors provide local contact information but
are not widely available as a plug-and-play module. The difficulty
in using visual sensing is that fingers occlude the object during re-
orientation. Recent works used RGBD [red, green, and blue (RGB)
and depth] cameras to estimate object pose but required a separate
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pose estimator to be trained per object, which limits their general-
ization to new object shapes (8, 9, 23, 26).

Because of challenges in perception and control, no prior work
has demonstrated a real-world–ready reorientation system. Al-
though controlling directly from perception is hard, given the full
low-dimensional representation of relevant state information such
as the object’s position, velocity, pose, and manipulator’s proprio-
ceptive state, it is possible to build a controller using deep reinforce-
ment learning (RL) that successfully reorients diverse objects in
simulation (7). RL effectively leverages large amounts of interaction
data to find an approximate solution to the computationally chal-
lenging optimization problem of solving for reorientation.
However, as a result of requiring large amounts of data and full
state information, today, such RL controllers can only be trained
in simulation. This leaves at least two open questions: how to
train controllers with sensors available in the real world such as
visual inputs and whether controllers trained in simulation transfer
to the real world (sim-to-real transfer problem).

The difficulty in training RL controllers from visual inputs stems
from the learner’s need to simultaneously solve the problem of in-
ferring the relevant state information (feature learning) and deter-
mining the optimal actions. If the optimal actions were known in
advance, it would be simpler to train a model that predicts these
actions from visual inputs (supervised learning). Such a two-stage
teacher-student training paradigm, where first a control policy is
trained via RL with full state information (teacher) and then a
second student policy is trained via supervised learning to mimic
the teacher, has been successfully used for several applications (7,
27–30). We found that the major roadblock in learning a visual
policy that works across diverse objects is the slow speed of

rendering in simulation, which resulted in training times of more
than 20 days with our compute resources. Such slow training
makes experimentation infeasible.We devised a two-stage approach
for training the vision policy that first uses a synthetic point cloud
without the need for rendering and is then fine-tuned with a ren-
dered point cloud to reduce the sim-to-real gap. Our pipeline makes
training five times faster. The second consideration was the use of a
sparse convolution neural network to represent the policy to
process point clouds at the speed required for real-time feedback
control (12 Hz in our case). By directly predicting actions from
point clouds, our approach bypasses the problem of consistently de-
fining pose/key points across different objects, allowing for gener-
alization to new shapes.

The next challenge is in overcoming the sim-to-real gap. In
dynamic in-hand object reorientation, both the robot and the
object move quickly. Achieving precise control in a system with
fast-changing dynamics is challenging. It becomes even more chal-
lenging when using a downward-facing hand because control fail-
ures are irreversible. Therefore, dynamic in-hand object
reorientation poses a substantial sim-to-real transfer challenge.
Some reasons for the sim-to-real gap are differences in motor/
object dynamics, perception noise, and modeling approximations
made by the simulator. For instance, contact models in fast simula-
tors tend to be a crude approximation of reality, especially for non-
convex objects (31). Whether sim-to-real transfer of reorientation
controller is even possible for these complex object shapes remained
unclear.

The systematic choices of identifying the manipulator dynamics
(details inMaterials andMethods); domain randomization (32); the
design of reward function; and the hardware considerations,

Fig. 1. Illustration of the robot system. (A) Front and side views of our real-world setup. The controller is a neural network that uses depth recordings from a single
camera along with the joint positions of the manipulator to predict the change in joint positions. (B) Visualization of the same controller reorienting three different
objects. The rightmost column shows the target orientation. The first two rows are instances of a four-fingered hand reorienting objects in the air. The last row
shows reorientation with the help of a supporting surface (extrinsic dexterity).
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including the number of fingers and the fingertip material, reduced
the sim-to-real gap. We conducted experiments in the challenging
downward-facing hand configuration. We tested the controller’s
ability to make use of an external support surface for reorientation
[extrinsic dexterity (33)] and the harder condition when the object
is in the air without any supporting surface. The results show pro-
gress toward developing a real-time controller capable of dynami-
cally reorienting new objects with complex shapes and diverse
materials by any amount in the full space of rotations [SO(3),
special orthogonal group in three dimensions] using inputs from
just a single commodity depth camera and joint encoders. Although
there is substantial room for improvement, especially in achieving
precise reorientation, our results provide evidence that sim-to-real
transfer is possible for challenging tasks involving dynamic and
contact-rich manipulation in less-structured settings than previous-
ly demonstrated.

Last, many prior efforts used custom or expensive manipulators
[such as the Shadow Hand (8, 9, 10) costing more than $100,000]
and often relied on sophisticated sensing equipment such as a
motion capture system. Such a hardware stack is hard to replicate
because of its cost and complexity. In contrast, our hardware
setup costs less than $5000 and uses only open-source components,
making it easier to replicate. Furthermore, our platform is not spe-
cific to object reorientation and can be used for other dexterous ma-
nipulation tasks. Because of the low barrier to entry and the
evidence that such a system can tackle a challenging manipulation
task, our platform can democratize research in dexterous
manipulation.

RESULTS
We trained a single controller to reorient 150 objects from an arbi-
trary initial to a target configuration in simulation. The learned con-
trollers were deployed in the real world on the open-source three-
fingered D’Claw manipulator (34) and a modified four-fingered
version with 9 and 12 degrees of freedom, respectively. The
robot’s observation is a depth image captured from a single Intel
RealSense camera and the proprioceptive state of the fingers. The
goal is provided as the point cloud of the object in a target config-
uration in the SO(3) space. The initial configuration of the object is
a random transformation in SE(3) (special Euclidean group in three
dimensions) space within the range of the robot’s fingers—The
object is either set on a table or handed over by a human to
the robot.

We experimented with the hand in the downward-facing config-
uration in two settings: with and without a supporting table. Our
system runs in real time at a control frequency of 12 Hz using a com-
modity workstation. Figure 1 shows the intermediate steps of ma-
nipulating three objects to target orientations depicted in the
rightmost column. The proposed controller reorients a diverse set
of new objects with complex geometries not used for training.
Movie 1 provides a short summary of our results with audio.
Movie S1 shows our system reorienting many objects and provides
a more detailed summary of our major findings. Movie S2 visualizes
the setting where the robot is tasked with a sequence of target ori-
entations. In such a scenario, it has to stop when it reaches the
current target orientation and then restart to achieve the next target.

For quantitative evaluation, we used seven objects from the
training dataset (B), which we refer to as in distribution, and five

objects from the held-out test dataset (S), which we refer to as
out of distribution (OOD). Objects are shown in Fig. 2A. We
tested each object 20 times with random initial and goal orientation
in each testing condition. We three-dimensionally (3D) printed
these objects to ensure that the shape of objects in simulation and
the real world was identical, which is helpful in evaluating the extent
of sim-to-real transfer. Whereas the shape of these seven objects is
included in the training set, the surface properties, such as friction,
of the real-world objects may not correspond to any object used for
training in simulation. Evaluation on five OOD objects tested gen-
eralization to shapes. To further showcase generalization to shapes
and different material properties, we also present results on some
rigid objects from daily life. The orientation errors were measured
using an OptiTrack motion capture system that tracks object pose.
We defined error as the distance between the goal and the object’s
orientation when the controller predicts that it has reached the goal
and stops. The motion capture was only used for evaluation and was
not required by our controller otherwise.

Extrinsic dexterity: Object reorientation with a
supporting surface
We first report results on the easier problem of reorienting objects
when the table is present below the hand to support the object.
Using an external surface to aid reorientation has been referred to
as extrinsic dexterity (33) and is necessary in many real-world use
cases. Visualization of the proposed controller reorienting a diverse
set of objects is provided in Fig. 3. To demonstrate the versatility of
our system, we present results of the robot manipulating objects of
different shapes, materials, and surfaces and using different finger-
tip materials and varying numbers of fingers.

Reorientation using a three-fingered manipulator with
rigid and soft fingertips
With table support, we found three fingers to be sufficient for the
reorientation task. The error distribution for different objects, when
tested on a table surface covered with a white cloth (material M1 in
Fig. 2E), is shown in Fig. 2B using a violin plot (35). Although the
overall error distribution is more informative, for ease of compari-
son, in Table 1, following the success threshold used in previous
work (8), we report summary statistics of success rate measured
as the percentage of tests with error within 0.4 or 0.8 rad. The
seven trained objects could be reoriented within an error of 0.4

Movie 1. A dexterous hand facing downward reorients various objects in
mid-air.
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Fig. 2. Experimental results of reorientation. (A) Twelve objects with their IDs. The first seven objects are from the training dataset B, and the last five are from the
testing dataset S. (B and C) Real-world error distribution when using rigid and soft fingertips, respectively, on material M1. (D) Error distribution in simulation for each
object as a violin plot (35). The violet rectangle shows the errors within (25 and 75%) percentile, and the horizontal bar in the rectangle depicts the median error. Trained
objects can mostly be reoriented within an error of 0.4 rad, with similar performance for rigid and soft fingertips. The error on test objects is higher, and soft fingertips
exhibit better generalization. (E) Five table materials. (F and G) Error distributions of different materials for objects #5 and #10, respectively.
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rad 81% of the time. For the five OOD test objects, the success rate
was lower, at 45%. As expected, the performance is better, with a
relaxed error threshold of 0.8 rad and worse at stricter thresholds.

Qualitatively observing the robot behavior revealed that some
causes of failure were the object overshooting the target orientation
or the finger slipping across the object, especially for OOD objects.
One explanation is that rigid hemispherical fingertips contact the
object in a very small area (close to making a point contact),
which makes small errors in the action commands more pro-
nounced. Further, we found that the fingertip material had low fric-
tion, resulting in slips that made manipulation harder. To mitigate
these issues, we designed and fabricated soft fingertips that cover the
rigid 3D-printed skeleton with a soft elastomer (see fig. S2C). Soft
fingertips provide higher friction and deform when contact
happens (compliance), increasing the contact area between the
finger and the object. The error distribution in Fig. 2C shows that
using soft fingers does not affect performance on trained objects but
improves generalization to OOD objects. Results in Table 1 confirm
the findings: Success rate on OOD objects increased from 45 to 55%

when switching from rigid to soft fingertips. Qualitatively, we
noticed that soft fingertips behave less aggressively than rigid fin-
gertips, resulting in smoother object motion. We therefore used
soft fingertips in the rest of the experiments. Although the control-
ler was trained using a rigid-body simulator, its performance did
not degrade when applied to soft fingertips.

The reorientation error can result from imperfect training, sim-
to-real gap, generalization gap, or failures at detecting whether the
object is at the target orientation, which triggers the controller to
stop. In Fig. 2D, we report the error distribution in simulation. Al-
though the trained controller was not perfect in simulation, the
errors in simulation followed the same trend as in the real world
(Fig. 2C) but were lower, indicating some sim-to-real gap. As
shown in Table 1, the performance gap between the simulation
and the real world was smaller when using a relaxed error threshold
of 0.8 rad compared with a threshold of 0.4 rad. This illustrates the
challenge of achieving precise reorientation. For some objects (#1
and #12), the error distribution was bimodal both in simulation
and the real world. The test runs with high errors largely resulted

Fig. 3. Different testing scenarios. We tested our controller on objects with diverse shapes and reorientation conditions such as using different supporting surfaces,
including a tablecloth, an uneven door mat, a slippery acrylic sheet, and a perforated bath mat. We also evaluated performance using fingertips with different softness:
rigid 3D-printed (A) and soft elastomer fingertips (B toG). (A) to (E) use a three-fingered robot hand. (F) and (G) use a four-fingered robot hand. Our policy can reorient real
household objects (E and G) and can operate without the need for a supporting surface (in the air) as shown in (G).
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from incorrect detection of when to stop. For instance, object #12
appeared nearly symmetric in the point cloud representation, which
often leads to errors close to 180°. Although it is hard to quantita-
tively disentangle errors originating from incorrect action predic-
tion and the stopping criterion, on the basis of our experience
with the system, we hypothesize that the latter contributes more,
which is supported by the analysis in Supplementary Discussion
(see the “Discussion on precise manipulation” section).

Object reorientation on different supporting materials
Changing the table surface changes the dynamics of object motion.
We tested whether our controller is robust to a diverse set of mate-
rials: a rough cloth (M1), a smooth cloth (M2), a slippery acrylic
sheet (M3), a bathtubmat with perforations resulting in nonstation-
ary object dynamics depending on the object’s position on the mat
(M4), and a door mat with uneven texture (M5). The materials have
different surface structures, roughness, and friction, leading to dif-
ferent system dynamics. We evaluated with one in-distribution
object (object #5) and one OOD object (object #10). Figure 2 (F
and G) shows that our controller performed similarly on different
supporting materials, demonstrating its robustness.

Toward object reorientation in air
Because the controllers discussed above were trained with a sup-
porting surface, when the supporting surface was removed, the ma-
nipulator consistently dropped the object, resulting in failures. Prior
work used a specialized training procedure of configuring the object
in a good pose at the start of each training episode and a manually
designed gravity curriculum (7) to learn in-air (without supporting
surface) reorientation controllers. Consequently, it was necessary to
train separate controllers for reorientation with a supporting surface
and in the air. It is preferable to have a single controller capable of
in-air reorientation and use the supporting surface, if available, to
recover from any dropping failures. We achieved this desideratum
by using a four-fingered hand and designing a reward function that
penalizes contact between the object and the supporting surface to
discourage the controller from using external support for reorien-
tation. When the controller is trained on a supporting surface with
the proposed reward function, in-air reorientation emerges.

Although both three- and four-fingered hands can reorient
objects on a supporting surface (Fig. 4A), only the four-fingered
hand was capable of in-air reorientation (Fig. 4B). We hypothesize
this to be the case because, with four fingers, more finger

configurations can reorient the object, making it easier for policy
optimization to find one solution. Furthermore, we hypothesize
that the redundancy in the number of fingers makes the system
more robust to errors in action prediction.

SO(3) object reorientation in air
Figure 1B shows how our controller trained in simulation reorients
different real-world objects in the air. In-air reorientation can fail if
the object is not accurately reoriented or if the robot drops the
object. Because in-air reorientation is more challenging, it is possi-
ble that the controller is less accurate at reorienting objects. On eval-
uation with two objects, we found the distribution of orientation
error in trials where the objects are not dropped (Fig. 4C) to be
similar to reorientation with the supporting surface, indicating
that the controller does not lose reorientation precision in the
more challenging in-air scenario. In simulation analysis, we did
not notice any notable correlation between orientation error and
the distance between the initial and target orientations (fig.
S12B), indicating that the controller performs similarly in the full
SO(3) space.

Our controller performs dynamic reorientation. The median
time for manipulation across objects and randomly sampled orien-
tation distances in the full SO(3) space was less than 7 s (Fig. 4D),
which makes it a fast in-air reorientation controller operating in the
full SO(3) space. Figure 4D also shows that the reorientation times
in the real world were longer than in simulation, which we believe is
because of real-world contact dynamics being different from
simulation.

Simulation analysis revealed that object dropping was the most
notable source of errors (fig. S12C). Dropping rates vary substan-
tially across objects. Real-world results followed the same trend.
The dropping rate of a shape used in training, the truck (object
#5), was 23%, much lower than the dropping rate of 56% for an
OOD duck-shaped object (#10). The dropping rate for the duck-
shaped object in the simulation was around 20%, showing a sim-
to-real gap. However, it remains unclear whether the difference in
performance can be attributed to the simulator being an approxi-
mate model of the real world or whether the object in the real
world is much harder to manipulate. This is because, although
the simulation and real-world experiments used the object with
the same shape, properties such as surface friction that are critical
in reorientation can be different. If an object is curved and has a
smooth surface, which is the case with the duck, small differences

Table 1. Statistics of the orientation error when the hand reorients objects on a table. CI stands for bias-corrected and accelerated (BCa) bootstrap
confidence interval. Train stands for testing on the seven objects (Fig. 2A) from the training dataset B. Test stands for testing on the five objects from the testing
dataset S.

With rigid fingertips (real) With soft fingertips (real) In simulation

Train Test Train Test Train Test

<0.4 rad (22.9°) 81% 45% 79% 55% 96% 85%

95% CI (73%, 90%) (32%, 58%) (71%, 86%) (44%, 62%) (94%, 97%) (82%, 88%)

<0.8 rad (45.8°) 95% 75% 98% 86% 98% 87%

95% CI (88%, 98%) (46%, 91%) (96%, 99%) (58%, 96%) (97%, 99%) (84%, 90%)

95% CI of the median of orientation errors (rad) (0.20, 0.27) (0.29, 0.46) (0.21, 0.28) (0.33, 0.42) (0.12, 0.13) (0.15, 0.18)
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in friction can substantially change the task difficulty. We chose to
report results on the duck because it was used in prior work (23), is
among the harder objects to reorient, and thus also highlights the
limitations of our controller.

If a table was present below the hand (for example, the setup
shown in the third row of Fig. 1B) and the object was dropped,
we noticed that our controller picked up the object and continued
reorienting—an instance of recovery from failures. It is possible that
the reward term encouraging in-air reorientation might hurt on-

table reorientation. However, the error distribution for on-table re-
orientation with the updated reward function (Eq. 6) (Fig. 4E) was
similar to earlier on-table experiments. Moreover, although our
controller was trained using objects with asymmetry or reflective
symmetry, which makes learning much easier, we noticed some
generalization to symmetric objects (Fig. 4F, more discussion in
Supplementary Discussion). The in-air, on-table, and dropping re-
covery results demonstrate that it is possible to build a single con-
troller that works across different scenarios.

Fig. 4. Benefit and performance of reorientation with a four-fingered hand. (A) When training a controller to reorient objects with a supporting surface, the three-
fingered and four-fingered hands achieved similar learning performance. (B) However, when we incentivized the hands to lift the object during reorientation, the four-
fingered hand substantially outperformed the three-fingered hand. (C) We tested the controller performance with a four-fingered hand in the air. We collected 20 non-
dropping testing cases for one in-distribution object and one OOD object. The error distribution is similar to that in the case of tabletop reorientation. (D) Distribution of
the episode time in both simulation and the real world. (E) Same controller’s performance on 12 objects with a supporting surface. (F) We tested the controller on
symmetric objects with a supporting surface. The controller behaved reasonably well even though it was never trained with symmetric objects.
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Qualitatively looking at the reorientation behavior, it might
appear that the object is not always moving toward the target orien-
tation. One possibility is that the manipulator randomly moves the
object until it gets close to the target orientation by chance and then
stops. To rule out this possibility, we provide videos in movie S1
showing that for the same initial but different target orientation,
the object motions are different. For the same initial and target ori-
entation, object motions across trials are similar, which would not
be the case if the object was randomly being reoriented.

Generalization to objects in daily life
In previous experiments, we used 3D-printed objects for quantita-
tive evaluation. However, real-world objects have varying object dy-
namics because of differences in material properties, nonuniform
mass distribution, and other factors that can vary across the
object surface. To test the generalization ability of our controller
on such objects, we conducted a qualitative evaluation on a few
household objects. Because we did not have the CAD (computer-
aided design) models of these objects to generate point clouds in
target orientations, we used a free iPad application called Scaniverse
to scan the objects. Note that the scan was only required to specify
the target orientation, and the scanned object cloud was imperfect
(see Fig. 5), resulting in noisy goal specification. Figures 1B and 5

illustrate examples of reorienting such objects. The results illustrate
that the controller exhibits a certain degree of robustness against
noise in the goal specification and some ability to generalize to
new materials and shapes.

Comparison with prior works
Unfortunately, a strictly fair comparison with prior work is not pos-
sible becausewemake fewer assumptions [such as no object-specific
pose trackers, reorientation in full SO(3) space, and not being quasi-
static], and there are substantial differences in hardware/sensing.
Nevertheless, to contextualize our research within the existing liter-
ature, we present an approximate comparison with the closest work
that reported reorientation results on a duck-shaped object with a
downward-facing but under-actuated hand with different morphol-
ogy and mechanical properties (23). The authors reported a success
rate of 60% (three of five tests) for reorienting the duck quasi-stat-
ically (reorientation time of more than 70 s compared with ~7 s for
our controller) to within 0.1 rad, but only in a subset of the SO(3)
space (rotation only along two axes). Further, they used a precise
object-specific pose tracker (error < 2° or 0.034 rad). If we assume
perfect stopping criteria (the agent stops reorientation if the object
is within 0.1 rad of the target), then for the duck-shaped object, we
achieved a success rate of 71% when dynamically reorienting in the

Fig. 5. Reorientation of real objects. Examples of reorienting real objects that were not 3D printed using a four-fingered and a three-fingered manipulator.
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full SO(3) space in simulation. Because of challenges in setting up
precise stopping in the real world, we could not run these evalua-
tions in the real world. Even if we did, the differences in material
properties between the duck used by us and prior research (23)
would make the comparison unfair. Comparing our simulation
and their real-world results is also unfair. However, the results in-
dicate that with more assumptions, such as the precise stopping cri-
terion, the performance of our system improves. Improving the
precision of our system without any additional assumptions is an
exciting avenue for future research.

The differences in experimental setups with other prior works
(8, 9, 17, 25) and concurrent work (36) are even larger. For instance,
OpenAI’s work (8) reported results on reorientation with a single
object (no generalization) with a simple shape (cube), an upward-
facing hand, and an extensive sensing system consisting of three
RGB cameras, a motion capture system, and a different hand. More-
over, their success criterion was the number of times an object
passes through a target pose, and they never trained their controller
to stop the object at the target pose, which we experimentally found
harder to learn. In the broader context of manipulation, the ability
to stop at the target pose is vital: If the robot uses a tool, it must
reorient it to the desired pose and hold the tool in that pose.

The focus of our work is not to increase the reorientation per-
formance on a single object; rather, our work expands the scope of
object reorientation to operate in more general and pragmatic set-
tings. The result is a single controller for reorienting multiple
objects, evidence of some generalization to new objects, and
dynamic reorientation in the air without a highly specialized per-
ception system. At the same time, there remains ample scope for
improving performance, and we hope that our conscious use of
open-source hardware, commodity sensing, computing, and fast-
learning framework (Figs. 6 and 7) will facilitate future research
in enhancing performance and comparing results.

DISCUSSION
Solving contact-rich tasks typically requires optimizing the location
at which the robotic manipulator contacts the object (4, 37, 38). One
would assume that predicting the contact location requires knowl-
edge of the object’s shape. However, inputs to the teacher policy
have no information about object shape, yet the teacher policy
could reorient diverse and new objects. One possibility is that the
agent gathers shape information by integrating information across
the sequence of touches made by the fingers. However, the teacher
policy is not recurrent, ruling out this possibility. The unexpected
observation of reorientation without knowledge of shape was made
by earlier work in the context of a reorientation system in simula-
tion (7). However, because real-world results were not demonstrat-
ed, it remained unclear whether such an observation was an artifact
of the simulator or the property of the reorientation problem. With
real-world evaluation, we have more confidence that shape infor-
mation may not be as critical to object reorientation as one might
think a priori. However, this is not to suggest that shape is not useful
at all. The results show that one can go quite far without shape in-
formation, but the performance, especially on precise manipulation
and in generalization to new shapes, can likely be improved by in-
corporating shape features into the teacher policy, an exciting direc-
tion for future research.

Typically, having more fingers introduces more optimization
variables, making the optimization problem harder in the conven-
tional view. However, we have some evidence to the contrary
(Fig. 4B). Having more fingers can make it easier for deep RL to
find a solution, especially in challenging manipulation scenarios
such as in the air, similar to how over-parameterized deep networks
find better solutions (a conjecture). We conjecture that over-param-
eterized hardware results in a larger pool of good solutions (more
ways to reorient an object with more fingers), making it easier for
current optimizers in deep learning to find a good solution.

In designing the proposed system, we either devised or made
several technical choices: two-stage student training, representing
both the camera recordings and proprioceptive readings as a
point cloud, sparse convolution neural network for real-time
control, limited range of domain randomization due to system iden-
tification, system identification using parallel simulation on graph-
ics processing unit (GPU), use of soft material on fingertips, and
using a larger number of fingers instead of the conventional
wisdom of using fewer fingers. These choices, however, are not spe-
cific to in-hand reorientation but can be applied to a broad spec-
trum of vision-based manipulation tasks involving rigid bodies.
We hope that the knowledge of these choices, along with a low-
cost platform, can further the goal of democratizing research in dex-
terous manipulation.

Limitations and possible extensions
Object reorientation with a downward-facing hand has notable
room for improving precision and reducing the drop rate. We hy-
pothesize that one possible cause for dropping objects is that the
control frequency of 12 Hz is not fast enough. The robot dynami-
cally manipulates the object, and it takes a fraction of a second to
lose control. It might be challenging to determine when the
object is slipping from the fingers in real time using visual feedback
at 12 Hz. Feedback control at a higher frequency may mitigate such
failures but requires either more efficient neural network architec-
tures or more processing power.

Another hypothesis for object dropping is missing information
regarding whether the finger is in contact with the object, whether
the object is slipping, or how much force is being applied. We con-
jecture that explicit knowledge of contact, contact force, and other
signals such as slip can substantially improve performance. Cur-
rently, the robot relies purely on occluded vision observations to
infer contacts. Augmenting the robot’s observation with touch
sensors is therefore an exciting direction for future investigation.

We also found that inaccurate prediction of rotational distance is
another cause for imprecise object reorientation. The prediction of
rotational distance is less accurate when the actual rotational dis-
tance is less than 0.4 rad (see the “Discussion on precise manipula-
tion” section in Supplementary Discussion).

We hypothesize that generalization and precision can be im-
proved by training on a larger object dataset, investigating RGB
sensing to complement depth sensing to capture fine geometric
structures and reduce noise, and integrating visual and tactile
sensing to obtain more complete point clouds. Further, there
remains a sim-to-real gap that future research should investigate.

We used D’Claw manipulators in this work because they are
open source and low cost. However, many aspects of the D’Claw,
such as the finger design and the number of fingers, are suboptimal.
For instance, although we observed some robustness to the softness

SC I ENCE ROBOT I C S | R E S EARCH ART I C L E

Chen et al., Sci. Robot. 8, eadc9244 (2023) 22 November 2023 9 of 16

D
ow

nloaded from
 https://w

w
w

.science.org at M
assachusetts Institute of T

echnology on N
ovem

ber 03, 2024



Fig. 6. Teacher and two-stage student training framework. First, a teacher policy was trained using RL with privileged state information. Then, a student policy was
trained to imitate the teacher using synthetic and complete point clouds as input. The student policy was further fine-tuned using rendered point clouds. During deploy-
ment, the student policy can be directly used to control real robots.
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of fingertips, different softness and skeleton designs can notably
affect the longevity of fingertips. We manually iterated over many
soft fingertip designs, which was time consuming. Similarly, the fin-
gertips have a hemispherical shape, quite different from humans
and presumably not optimal. The performance of the task can be
improved by better hardware design: the shape of fingers, the
degrees of actuation on each finger, the placement of fingers, and
the choice of materials. Manually iterating over these choices is

infeasible. A promising future direction is to use a computational
approach for automatically designing the hand for specific
tasks (39).

In summary, we present a real-time controller that can dynam-
ically reorient complex and new objects by any desired amount
using a single depth camera. The system is both simple and afford-
able, which aligns with the objective of making dexterous manipu-
lation research accessible to a wider audience.

Fig. 7. Student policy learning. (A) Student vision policy network architecture. (B) Sparse 3D CNN (convolutional neural network) component of the policy network. (C)
Proposed two-stage student learning learns faster than single-stage student learning. The dashed vertical line denotes the transition from the first to the second stage of
student learning. The performance dip happens because of a change in the distribution of point cloud inputs from being unoccluded in the first stage to being occluded
in the second. (D) Post-training evaluation of teacher and student policies on the training dataset B. For each object, the initial and target orientations were randomly
sampled 50 times, resulting in 7500 samples. The empirical cumulative distribution function (ECDF) of the orientation error is plotted. The results show that the students
are close to the teacher’s performance. (E to G) Comparing the ECDFs of the policies being evaluated on dataset B and dataset S reveals a small generalization gap for all
the policies. In (C to G), the shaded area shows the total area within one SD of the mean, based on running each experiment with three different random seeds.
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MATERIALS AND METHODS
Given a random object in a random initial pose, the robot was
tasked to reorient the object to a user-provided target orientation
in SO(3) space. We trained a single vision–based object reorienta-
tion controller (or policy) in simulation to reorient hundreds of
objects. The controller trained in simulation was directly deployed
in the real world (zero-shot transfer). The choices in our experimen-
tal setup were made to support future deployment of reorientation
in service of tool use and on a mobile manipulator.

Object datasets
We used two object datasets in this work: big dataset (B) and small
dataset (S).B contains 150 objects from internet sources. S contains
12 objects from the ContactDB (40) dataset. These two datasets do
not have overlapping shapes. More details on the object dataset are
in Supplementary Methods.

Simulation setup
We used Isaac Gym (41) as the rigid-body physics simulator. We
trained all the policies on a tabletop setup: Hands face downward
with a supporting table.

Success criteria
During training, the success criterion for reorienting an object acted
both as a reward signal and as a criterion for success to end the
episode. A straightforward success criterion is judging whether an
object’s orientation is close to the target orientation (orientation cri-
terion). However, a controller trained using this criterion tends to
cause the object to oscillate around the target orientation. To
address this issue, the success criterion was expanded to explicitly
penalize finger and object movements. For further details on how
we designed the success criteria for training, please refer to Supple-
mentary Methods.

Training the visuomotor policy
We modeled the problem of learning the controller, π, as a finite-
horizon discrete-time decision process with horizon length T. The
policy π takes as input sensory observations (ot) and outputs action
commands (at) at every time step t. Learning π using RL is data in-
efficient when the observation (ot) is high dimensional (for
example, point clouds). The reason is that the policy needs to simul-
taneously learn which features to extract from visual observations
and what the high-rewarding actions are. The problem would be
simplified if one of these factors were known: Learning a policy
via RL from sufficient state information would be much easier
than direct learning from sensory observations. Similarly, a priori
knowledge of high-rewarding actions would reduce the data re-
quirements of learning from visual observations.

Prior work has used this intuition to ease policy learning by de-
composing the learning process into two steps (7, 27, 28, 30). In the
first step, a teacher policy is trained in simulation with RL using low-
dimensional state space that includes privileged information. In the
case of in-hand object reorientation, privileged information in-
cludes quantities such as fingertip velocity, object pose, and
object velocity that can be directly accessed from the simulator
but can be challenging to measure in the real world. Because the
teacher policy operates from a low-dimensional state space, it can
be more efficiently trained using RL. Next, to enable operation in

the real world, one can either train a perception system to predict
the privileged information (8, 26) or train a second student policy to
predict high-rewarding teacher actions from raw sensory observa-
tions via supervised learning (7, 27, 28, 30).

An underlying assumption of the two-stage training paradigm is
that a low-dimensional state for learning a teacher policy can be
identified. Because there are no tools available to theoretically
analyze whether a particular choice of state space is sufficient for
policy learning, selecting the state inputs for the teacher policy is
a manual process based on human intuition. At first, object reori-
entation might seem to require knowledge of object shape because
the controller must reason about where to make contact. If object
shape is necessary, then it will not be possible to reduce depth ob-
servations into a low-dimensional state. However, past work found
that even without any shape information, it is possible to train RL
policies to achieve good reorientation performance on a diverse set
of objects in simulation (7). Therefore, teacher-student training can
be leveraged to simplify the learning of object reorientation.

To deploy the policy in the real world, some prior works trained
a perception system to predict the object pose (8, 9). However,
object pose is only defined with respect to a particular reference
frame. Choosing a common frame of reference across different
objects is not possible. As a consequence, pose estimators cannot
generalize across objects. Therefore, we chose to train an end-to-
end student policy that takes as input the raw sensory observations
and is optimized to match the actions predicted by the teacher
policy via supervised learning (42). Because supervised learning is
considerably more data efficient than RL, such an approach solves
the hard problem of learning a policy from raw sensory
observations.

The teacher-student training paradigm has been used to learn
object reorientation policy in simulation from visual and proprio-
ceptive observations (7). However, a separate policy was trained per
object. Second, it required more than a week to train the student
vision policy for a single object on an NVIDIAV100 GPU. We de-
veloped a two-stage student training (teacher-student2) framework
(Fig. 6) that substantially speeds up the vision student policy learn-
ing. Using this framework, we were able to learn a vision policy that
operates across a diverse set of objects and generalizes to objects
with different shapes and physical parameters.

Teacher policy: RL with privileged information
The learning of teacher policy (πε) is formulated as a RL problem
where the robot observes the current observation (oεt ), takes an
action (at), and receives a reward (rt) afterward. A single policy
(πε) is trained across multiple objects using proximal policy optimi-
zation (43) to maximize the expected discounted episodic return:
πε� ¼ arg maxπεE½

PT� 1
t¼0 γ

trt�. Because the observation ot at a
single time step t does not convey the full state information such
as the geometric shape of an object, our setup is an instance of par-
tially observable Markov decision process. However, for the sake of
simplicity and based on the finding that knowledge of object shape
may not be critical as discussed above, we chose to model the policy
as aMarkov decision process: at = πε

*
(ot; at − 1). The policy also takes

as input the previous action (at–1) to encourage smooth control.
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Observation space
The inputs to the teacher policy, ot, include proprioceptive state in-
formation, object state, and target orientation. Details are shown in
Supplementary Methods.

Action space
We used position controllers to actuate the robot joints at a frequen-
cy of 12 Hz. The policy outputs the relative joint position changes
at [ R3G. Instead of directly using at, we used the exponential
moving average of actions at ¼ αat þ ð1 � αÞat� 1 for smooth
control, where α ∈ [0,1] is a smoothing coefficient. In our experi-
ments, we set α = 0.8. Given the smoothed action at , the target joint
position at the next time step is qtgttþ1 ¼ qt þ at .

Reward
We first describe the reward function for the hand to reorient
objects on a table. The first term in the reward function (Eq. 1) is
the success criterion for the task. However, because this only pro-
vides sparse reward supervision, the criterion by itself is insufficient
for successful learning. Therefore, we added additional reward
shaping (44) terms to encourage reorientation. We used a dense
reward term that encourages minimization of the distance (Δθt)
between the agent’s current and target orientation (Eq. 2). We pe-
nalized the agent for moving fingertips far away from the object (Eq.
3). Without this term, fingers barely made any contact with the
object during training. We also penalized the agent for expending
energy (Eq. 4) and for pushing the object too far from the robot’s
hand (Eq. 5), in which case the episode was also terminated. The
reward terms are mathematically expressed as

r1t ¼ c1ðTask successfulÞ sparse task reward ð1Þ

þc2
1

j Δθt j þ[θ
dense task reward ð2Þ

þc3
XG

i¼1
kpfit � pot k

2
2 keep fingertip close to the object ð3Þ

þc4j _qt jT j τt j energy reward ð4Þ

þc5 kpot k
2
2 . p

� �
penalty for pushing the object away ð5Þ

where c1, c2 > 0 and c3, c4, c5 > 0 are coefficients, is an indicator
function, εθ and p are constants, pfit is the fingertip position of ith
finger, pot is the object center position, and τt is the vector of the
joint torques.

Using the aforementioned reward function, we were able to train
reorientation policies that used the support of the table. Next, to
enable the more challenging behavior of reorienting objects in the
air, we added a penalty for the contact between the object and table
(Eq. 7) and a penalty for using the penultimate joint instead of the
fingertip for reorientation (Eq. 8). Although the term in Eq. 8 is not
critical, it results in more natural-looking behaviors. The overall

reward function is

r2t ¼ r1t ð6Þ

þc6 ðobject contacts with the tableÞ ð7Þ

þc7
XN

i¼1
pfit;z . pz
� �

ð8Þ

where c6, c7 < 0 are coefficients.

Student policy—Imitation learning from depth
observations
The student policy (πS) was trained in simulation with the purpose
of being deployed in the real world. Because the sim-to-real gap for
depth data is less pronounced than RGB data, we only used the
depth images provided by the camera along with readings from
joint encoders. We represented the depth data as a point cloud in
the robot’s base link frame. To enable the neural network represent-
ing πS to model the spatial relationship between the fingers and the
object, we expressed the robot’s current configuration by showing
the policy a point cloud representing points sampled on the
surface of the fingers. We concatenated the point cloud obtained
from the camera along with the generated point cloud of the
hand. We denote this scene point cloud as Ps

t .

Goal representation
Instead of providing the goal orientation as a pose, which has gen-
eralization issues discussed above, the goal is represented as the
object’s point cloud in the target orientation Pg. In other words,
the policy sees how the object should look in the end (Fig. 7A,
top left).

Observation space
The input to πS is the point cloud Pt =Ps

t∪ Pg (see Fig. 7A). We also
did an ablation study on different ways to process the goal point
cloud in the Supplementary Discussion section "Using a different
encoder for goal." The results show that merging Ps

t and P g

before they are input to the network leads to faster learning.

Architecture
The critical requirement for the vision policy is to run at a high
enough frequency to enable real-time control. For fast computation,
we designed a sparse convolutional neural network to process point
cloud (Pt) using the Minkowski Engine (see Fig. 7A) (45). Com-
pared with the architecture used in (7), our convolutional
network has a higher capacity to make it possible to learn the reori-
entation of multiple objects.Without direct access to object velocity,
it is necessary to integrate temporal information in πs, for which we
used the gated recurrent unit (46) in the network.

Optimization
The student policy πS was trained using DAGGER (42) to imitate
the teacher policy πε.

SC I ENCE ROBOT I C S | R E S EARCH ART I C L E

Chen et al., Sci. Robot. 8, eadc9244 (2023) 22 November 2023 13 of 16

D
ow

nloaded from
 https://w

w
w

.science.org at M
assachusetts Institute of T

echnology on N
ovem

ber 03, 2024



Need for two-stage student learning
We found training a vision policy in simulation to be slow, consum-
ing more than 20 days on an NVIDIA V100 GPU (Fig. 7C). The
main reason for slow training is that the simulator performs render-
ing to generate a point cloud that consumes a substantial amount of
time and GPUmemory. To reduce training time, we generated syn-
thetic point clouds by uniformly sampling points on the object and
robot meshes used by the simulator. The synthetic point cloud is
also complete (no occlusions), which makes training easier. The
vision policy (πS1) can be trained with the synthetic point cloud in
less than 3 days, which is a sevenfold speedup compared with train-
ing with the rendered point cloud (stage 1; see Fig. 7C). However,
the policy, πS1, cannot be deployed in the real world because it op-
erates on an idealized point cloud (no occlusions). Therefore, once
the student reached high performance, we initiated stage 2, where
the policy was fine-tuned with the rendered point cloud. Such fine-
tuning is quick in wall-clock time (around 1 day), and the resulting
policy (πS2) performed better than training from scratch with ren-
dered point clouds (see Fig. 7C). It is possible to further reduce
the training time of the student policy by using visual pretraining
with passive data that we discuss in the Supplementary Discussion
section "Stage 0: speeding up vision policy training with visual pre-
training." An additional benefit of the two-stage student policy
training is that πS1 is agnostic to the camera pose. Therefore, a
policy from a new viewpoint (πS2) can be quickly obtained by fine-
tuning using rendered point clouds from that camera pose. Training
the vision policy from scratch is not necessary.
Stage 1: Details of synthetic point cloud
In stage 1, the simulation is not used for rendering but only for
physics simulation. We generated the point cloud for each link on
the manipulator and object by samplingK points on their meshes in
the following way: Let the point cloud of link lj in the local coordi-
nate frame of the link be denoted as Plj [ RK�3. Given link orien-
tation (Rlj

t [ R3�3) and position (plj
t [ R3�1) at time step t, the

point cloud can be computed in the global frame,

Plj
t ¼ PljðRlj

t Þ
T
þ ðpljt Þ

T
. The point cloud representation of the

entire scene is the union of point clouds of all the links, the
object being manipulated, and the object in the goal orientation:
Ps
t ¼

Sj¼M
j¼1 Plj

t , where M is the total number of links (bodies) in
the environment. The point cloud Ps

t can be efficiently generated
using matrix multiplication.
Stage 2: Details of rendered point cloud
In stage 2, at each time step, we acquired depth images from the
simulator and converted them into point clouds (which we call ex-
teroceptive point clouds) using the camera’s intrinsic and extrinsic
matrices. Note that such a point cloud is incomplete because of oc-
clusions. We also converted the joint angle information into poses
of the links on the robot hand via forward kinematics and then gen-
erated the complete point cloud of the robot (which we call a pro-
prioceptive point cloud). Note that such a proprioceptive point
cloud of a robot can be easily obtained in the real world in real
time from the joint position readings. The policy input is the
union of the exteroceptive and the proprioceptive point cloud.

Reducing the simulation to reality gap
There are two main sources of the gap between simulation and
reality. The first one is the dynamics gap that arises from differences

in the robot dynamics, the approximation in the simulator’s contact
model, and differences in object dynamics that depends on material
properties such as friction. The other source is the perception gap
caused by differences in statistics of sensor readings and/or noise.
One way to reduce these gaps is to train a single policy across many
different settings of the simulation parameters [domain randomiza-
tion (32)]. The success of domain randomization hinges on the
hope that the real world is well approximated by one of the many
simulation parameter settings used during training. The chances of
such a match increase by randomizing parameters over a larger
range. However, excessive randomization may result in an overly
conservative policy with low performance (47). Therefore, we
made design choices that reduce the need for domain randomiza-
tion and used it only when needed.

The perception gap is reduced by using only depth readings,
which are more similar between simulation and reality than RGB.
To account for noisy depth sensing, we added noise to the simulated
point cloud. The dynamics gap can be reduced by identifying sim-
ulation parameters closest to the real world. Although such identi-
fication is possible for the robotic manipulator, it is infeasible for
object dynamics that vary in material and mass distribution. There-
fore, we performed system identification on the robot dynamics and
used only small randomization to account for unmodeled errors.
We used a larger range of domain randomization on the object
and environment dynamics. To make the policy more robust to un-
modeled real-world physics, we applied random forces on the object
during training, which pressures the policy to reorient objects while
being robust to external disturbance. Last, to increase compliance
and friction between the object and the manipulator, we used soft
fingertips. Such a choice makes the systemmore tolerant of errors in
control commands. Empirically, we noticed that soft fingertips
make the robot less aggressive and reduced overshoot.

Identification of robot dynamics
We built the Unified Robot Description Format (URDF) model for
the manipulator using its CAD model, which provides accurate ki-
nematics parameters, but the dynamics parameters, such as joint
damping and stiffness, must be estimated. One way of identifying
dynamics parameters is to leverage the equations of motion (or
the dynamics model) and solve for the unknown variables using a
dataset of motion trajectories. The Isaac Gym simulator has a built-
in dynamics model. However, because the simulator’s code is not
open source, we did not have access to the precise dynamics
model or the gradients of dynamics parameters. We, therefore,
used a black-box approach that leverages the ability of Isaac Gym
to perform massively parallel simulations. We spawned many sim-
ulations with different dynamics parameters and used the one that
has the closest match to the real robot’s motion.

Let λi ∈ Λ denote the dynamics parameters of the ith simulated
robot (Cλi), where Λ denotes the entire set of dynamics parameter
values over which search is performed. To evaluate the similarity
between the motion of Cλi and the real robot (Creal), we computed
the score: h qCreal

A ð�Þ; q
Cλi
A ð�Þ

� �
¼ � kqCreal

A ð�Þ � qCλiA ð�Þk
2
2, where qCAð�Þ

represents the joint position trajectories of a robot C given action
commands A(⋅), which are detailed in the Supplementary
Methods. The closer the motion of the simulated robot is to that
of the real world, the higher the score will be. We used the black-
box optimization method of Covariance Matrix Adaptation Evolu-
tion Strategy (CMA-ES) (48), an instance of evolutionary search
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algorithms, to determine the optimal dynamics parameter: λ * = arg
maxλ ∈ Λh qcrealA ð�Þ; qC

λ

A ð�Þ
� �

. Note that it might be impossible to find
a simulated robot that exactly matches the real robot because of the
approximate parameterization of real-world dynamics in simula-
tion and the stochasticity in the real-world resulting from actua-
tion/sensing noise. More details on the identification are in the
Supplementary Methods.

Real-world deployment
Real-world observation
The real-world observation includes the joint positions of each
motor in the manipulator and the depth image from a RealSense
camera. Details of how the joint positions and depth image were
converted into a unified point cloud input can be found in the Sup-
plementary Methods.

Stopping criteria
To automatically stop the robot, we trained a predictor that reuses
features from the policy network to predict ∣Δθt∣ (see Fig. 7A). The
robot is stopped when Δθpredt , θ and katk , a. More details on the
stopping criteria, the real-world experimental setup, and the proce-
dure for quantitative evaluation are in the Supplementary Methods.

Supplementary Materials
This PDF file includes:
Methods
Discussion
Figs. S1 to S14
Tables S1 to S3
References (49–56)

Other Supplementary Material for this
manuscript includes the following:
Movies S1 and S2
MDAR Reproducibility Checklist
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