
GelSight360: An Omnidirectional Camera-Based Tactile Sensor for

Dexterous Robotic Manipulation

Megha H. Tippur and Edward H. Adelson

Massachusetts Institute of Technology

mhtippur@csail.mit.edu, adelson@csail.mit.edu

Abstract— Camera-based tactile sensors have shown great
promise in enhancing a robot’s ability to perform a variety
of dexterous manipulation tasks. Advantages of their use can
be attributed to the high resolution tactile data and 3D depth
map reconstructions they can provide. Unfortunately, many of
these tactile sensors use either a flat sensing surface, sense on
only one side of the sensor’s body, or have a bulky form-factor,
making it difficult to integrate the sensors with a variety of
robotic grippers. Of the camera-based sensors that do have
all-around, curved sensing surfaces, many cannot provide 3D
depth maps; those that do often require optical designs specified
to a particular sensor geometry. In this work, we introduce
GelSight360, a fingertip-like, omnidirectional, camera-based
tactile sensor capable of producing depth maps of objects
deforming the sensor’s surface. In addition, we introduce a
novel cross-LED lighting scheme that can be implemented
in different all-around sensor geometries and sizes, allowing
the sensor to easily be reconfigured and attached to different
grippers of varying DOFs. With this work, we enable roboticists
to quickly and easily customize high resolution tactile sensors
to fit their robotic system’s needs.

I. INTRODUCTION

As the use of robots in both industry and our everyday

lives becomes more ubiquitous, improvements in a robot’s

ability to safely and reliably complete a wide range of

dexterous manipulation tasks become necessary. One way to

enhance robots is to provide them with the sense of touch.

When interacting with the environment, occlusions to the

vision system by other objects or the manipulator itself can

occur. Sometimes, no visual feedback may even be available,

such as when searching in a bag or on the top shelf of a

cabinet. In such cases, using tactile feedback can greatly

benefit the system.

Specifically, camera-based tactile sensors, like GelSight,

have been used to successfully complete a variety of tasks

[1]–[3]. Their ability to provide high resolution information

and depth reconstructions can help a robot estimate the pose

of an object in contact with the end effector [3], [4] or

quickly sense unforeseen collisions and prevent excessive

force before an object is damaged [5].

Unfortunately, many of the sensors capable of producing

high resolution tactile data and depth reconstructions have

a flat sensing surface and bulky form-factor, so integrating

tactile sensors with robotic hands that use multiple fingers

and higher DOFs can be difficult. Previous attempts at curved

camera-based tactile sensors required extensive testing to

ensure good illumination throughout the sensor, so alterations

to the sensor’s size and geometry would require reconfigura-

Fig. 1. (A) Two GelSight360 sensors mounted on the WSG 50-110 (Weiss)
robotic gripper with an M6 screw in its grasp. (B) Example of the tactile
image captured by the camera housed inside the sensor’s body showing
the impression of the screw threads. (C) Zoomed in difference image of
the contact region of interest (ROI). (D) Reconstructed depth map of the
contact region. (E) Point cloud of the contact ROI projected onto the sensor
body’s surface showing the deformation of the soft gel elastomer caused by
the screw threads.

tion and tuning of the design process. We introduce a curved,

all-around, camera-based tactile sensor in a fingertip-like

form factor which is capable of producing high resolution

tactile data and depth reconstructions, as shown in Figure 1.

Additionally, the lighting scheme and calibration procedure

introduced in this work can be generalized to a variety

of different sensor shapes and sizes, making it easier and

more accessible for roboticists to incorporate tactile sensing

into their robotic systems. The all-around sensing nature

of this design also allows for the sensors to be employed

on a variety of grippers, both anthropomorphic and non-

anthropomorphic, with varying DOFs.

II. RELATED WORKS

In recent years, a great deal of progress has been made in

the development of tactile sensing technologies for integra-20
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tion with robotic grippers for dexterous manipulation tasks.

[6]. A variety of transduction methods, ranging from ca-

pacitive [7]–[9], resistive [10]–[12], piezoelectric [13]–[15],

magnetic [16], and vision-based [2], [17]–[20] have been

used to help robots better interact with their environments

by providing them with the sense of touch. In particular,

visuotactile sensors have gained popularity in robotics due

to their ability to provide high resolution information over

a variety of sensing modalities, such as contact localization

[20], [21], normal force estimation [22]–[24], slip detection

[25], [26], and object geometry estimation [1], [2], [24], [27],

[28].

A. GelSight and Related Sensors

Our sensors use similar lighting principles, designs, and

stereo algorithms introduced in prior GelSight works [24] to

obtain 3D geometric reconstructions of objects deforming the

surface of the sensor, but now, in a compact, curved form-

factor with tactile sensing capabilities all around the surface

of the sensor. The basis of GelSight and related sensors use a

camera embedded behind a piece of clear acrylic bonded to a

soft, gel elastomer. The elastomer is painted with a reflective

coating to capture any deformations on the surface of the

gel. Additionally, by illuminating the sensor with different

colored LEDs (red, green, and blue), photometric stereo

methods can be used to estimate the surface normals of the

contact region [24], [29]. These normals can then be used

to calculate the depth maps of the sensor’s surface [1], [24].

3D depth reconstructions have shown to be extremely useful

in a large number of dexterous robotic manipulations tasks,

such as object shape perception [21], texture and hardness

classification [5], [30], [31], pose estimation [1], [32], and

deformable object manipulation [3], [33]. However, even

though these sensors are able to capture tactile data with a

high spatial resolution, one drawback is that many GelSight

(and related) sensors have a flat sensing surface.

GelSight sensors with more unconventional and non-flat

sensing surfaces have also been developed [4], [34], [35].

Romero and Adelson were able to use the principles of

photometric stereo to build a rounded, fingertip-shaped Gel-

Sight capable of producing depth maps [34], [36]. However,

as with other GelSight sensors, great care was taken to

ensure a uniform distribution of all colored lights using

light piping methods. Users desiring changes to the shapes

or sizes of these sensors may therefore require further

optical experiments and design alterations. Do and Kennedy

also developed a semi-hemispherical sensor that utilized an

autoencoder network to generate high resolution point clouds

of the gel’s deformation with a mean error of 0.28mm [27].

B. All-Around Camera-Based Tactile Sensors

The ability for a tactile fingertip-like sensor to sense mul-

tiple contacts from different directions, just like the human

fingertip, can greatly help a robot speed up exploration time,

sense unforeseen collisions, or even perform complex in-

hand manipulation tasks that might not have been possible

with a flatter sensor [34], [37]. Though one-sided, curved

sensors might be sufficient for parallel-jaw grippers, robot

hands utilizing a greater number of fingers with higher

DOFs may benefit from utilizing data provided by all-around

sensors [34], [38], [39]. Recently, a wide range of camera-

based, all-around sensors have been introduced. The Omni-

Tact sensor [37] has a finger-like form factor (cylindrical base

with a semi-hemispherical top) and five strategically-placed

cameras embedded in the painted gel elastomer. The sensor

was able to estimate the angle of contact with objects and

was successfully used in an insertion task [37]. The GelTip

sensor uses a geometry similar to [37] but with a rigid shell

supporting the gel. It uses a single camera housed at the

sensor’s base and structured light to observe contact regions

[40]. Sun et al. used the information from a structured-

light illumination scheme with a neural network to estimate

force measurements and contact localizations within sub-

millimeter accuracy [22].

We build off the techniques used in the works mentioned

above to introduce an all-around, curved GelSight sensor

capable of producing high resolution depth reconstructions

in a compact form factor. In addition, we introduce a gen-

eralized cross-illumination scheme that can be implemented

in sensors of different shapes and sizes, allowing for the

use of photometric stereo techniques to obtain object contact

geometries.

III. DESIGN AND FABRICATION

A. Design Criteria

As the complexity and variety of dexterous robotic ma-

nipulation tasks have grown, a wide range of end effectors

have been introduced to help accomplish these tasks [38].

Since robotic grippers can vary in size, shape, and DOFs

available, fitting them with camera-based tactile sensors

that utilize specific lighting and optical strategies can be

difficult and time consuming. The illumination strategy of

our omnidirectional GelSight sensor aims to minimize these

disadvantages. Specifically, we design our sensor to have 1) a

small, compact tactile sensor and housing assembly that can

modularly be fitted to different grippers 2) a 3D, rounded

sensor shape with omnidirectional, high resolution tactile

sensing capabilities, and 3) a generalizable cross-lighting

illumination system that can be implemented in different

sensor geometries. This section describes the design choices

and fabrication methods used to construct a tactile sensor

capable of meeting these criteria.

B. Sensor Illumination Strategy

The lighting strategy of previous GelSight and GelSlim

sensors used photometric stereo techniques to estimate the

surface gradients generated when an object is pressed into the

sensor’s soft, elastomer skin [1], [23], [24], [29]. The RGB

pixel intensities of the image produced by the sensor would

then be mapped to the surface gradients with a look-up-table

[34]. Once mapped, the horizontal and vertical gradients

found could be integrated using the Fast Poisson Solver to

produce a 3D height map of the sensor’s deformed elastomer

skin.
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Fig. 2. (Top Left) 3D model of fully assembled sensor in housing structure.
(Right) Exploded view of sensor.

Although the photometric stereo approach has worked well

for GelSight sensors with flatter or partially curved surfaces

[34], [36], the omnidirectional, curved nature of our sensor

requires a novel illumination strategy in order to use these

techniques. In addition, we aim to develop a lighting system

that can easily be customized to different sensor sizes and

shapes without the need to use optical simulation software

or repeated manufacturing attempts to adequately illuminate

the different geometries.

We transform the 2D red, green, and blue illumination

pattern shown in [1] to a 3D-cross structure that uses ultra-

thin LEDs mounted onto thin PCBs that are fitted together, as

shown in Figure 2 Part 4. Each PCB in the internal crossing

structure is mounted on both sides with either red or green

LEDs, providing two colored lights in orthogonal directions

to each other in the XZ and YZ planes. To minimize

the occlusions of the sensing surface caused by the PCBs

and LEDs, the double-sided boards are manufactured to

have 0.2mm thickness and 0.25mm thick SMD LEDs (1608

package). Reflow soldering is used to further minimize the

cross-structure’s thickness. The bottom LED mounted with

blue LEDs (2012 package) provides the third illumination

color in the XY plane. The blue LED ring also houses

the VCC and GND through-hole connections for both the

red and green LED boards, the appropriate resistors that

control the current for each of the RGB circuit legs, and

the connections that connect the sensor to the 5V and

GND of the Raspberry Pi. This was done to help keep the

electrical components contained within the sensor body and

reduce wiring, helping make the sensor more modular for

different gripper applications. The crossing-PCB structure is

Fig. 3. Sensor illumination strategy implemented in the sensor to achieve
photometric stereo. The top diagram shows a side view of the sensor with
the blue LEDs shining from the base of the sensor. The light travels through
the epoxy and elastomer, and is reflected by the elastomer’s semi-specular
coating. This provides the vertical blue color directionality. The bottom
diagram shows a top-down, cross-sectional view of the sensor, where the
red and green LEDs are implemented in an orthogonal, cross shape. The red
and green lights travel through the epoxy and elastomer, and are partially
reflected by the semi-specular paint. For simplicity, all reflections of the ray
tracing are not shown.

encapsulated in an epoxy resin shell and covered in a soft,

gel elastomer covered in a semi-specular coating (described

in Sections III-C and III-D). By simply altering the shapes

and sizes of the PCBs, the 3D-cross structure can be used to

produce different omnidirectional tactile sensors.

C. Rigid Internal Skeleton Fabrication

The ultra-thin PCB boards used in the cross-illumination

structure are prone to bending and breaking even under

small deflections. To prevent the boards from breaking

and to inhibit the LEDs from losing their orthogonal-plane

configuration when the sensor is used, the boards must be

encapsulated in a rigid resin shell matching the desired board

outline. A two-part, gravity mold is designed to cast both

the resin shell and gel elastomer. The mold negatives are

printed on the Form Labs Form 2 Stereolithography printer,

and Smooth-On Mold Star 20T is used to cast the silicone

molds.

To assemble the molding structure, the red and green LED

boards are aligned onto the top silicone molding piece, and

the bottom 5V and GND wirepads are threaded through the

cut-outs made in the base of the silicone mold. We chose

Smooth-On’s EpoxAcast 690 epoxy resin since it produces

a bubble-free, durable shell when fully cured. The epoxy is
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mixed, degassed, and injected into the top inlet holes of the

mold. It is left to cure at room temperature for at least 24

hours.

Fig. 4. Molding strategy used to encapsulate the flimsy, ultra-thin PCBs in
a hard epoxy shell to prevent breaking and ensure the orthogonal direction
of the red and green LEDs is maintained.

D. Painted Gel Elastomer Fabrication

The molds for casting the soft, outer elastomer are made

using the same method as described in Section III-C. Ad-

ditionally, the top mold covering used when casting the

resin shell is re-used to ensure that the resin shell and

elastomer coating remain aligned on all axes throughout this

process. Since we aim to ultimately use these sensors to add

tactile feedback to robotic grippers that will be repeatedly

interacting with objects, the durability after prolonged use

must be considered. To promote the adhesion that reduces

the chance of delamination between the internal resin shell

and the soft elastomer, the surface of the epoxy is brushed

with DOWSIL P5200 Adhesion Promoter.

We choose an opaque semi-specular aluminum coating

for our sensor, as it is more sensitive to changes in the

sensor’s surface normals and provides less diffusion of light

when compared to other Lambertian, matte coatings used in

previous, flatter tactile sensors [1], [23], [24]. The silicone

molds are prepared by first spraying the molds with a thin

layer of Mann Ease Release 200, followed by airbrushing

the inside surface of the base mold with an opaque coating

of 1 : 1 : 0.25 : 3 of the Smooth-On Psycho Paint Part

A, Smooth-On Psycho Paint Part B, aluminum flakes, and

NOVOCS solvent. We find that by painting the molds and

filling them with the uncured PDMS, the silicone and paint

can cure together, making it less likely for the outer paint

to wrinkle, delaminate, or be scratched off over the sensor’s

lifetime. A ratio of 1:18 (Activator : Base) of optically clear

Silicones Inc. XP-565 is mixed, degassed, and poured into

the painted base mold. The resin skeleton is then pushed into

the base mold and left to cure at room temperature overnight.

E. Assembly and Housing

Once the PDMS has cured, the sensor is demolded, and

the blue LED ring is press-fit into the inner rim of the sensor.

The exposed wires from the epoxy-encapsulated LED boards

and Raspberry Pi 5V/GND wires are soldered into the PCB

ring.

The housing for the sensor is 3D printed with Onyx

filament on the Markforged Onyx One printer. The bottom

rim of the sensor is covered in a thin layer of Gorilla Clear

Epoxy Glue and press fit into the sensor holder ring (see

Figure 2 Part 6). Our sensor design uses the 160◦ Frank-

S01-V1.0 Raspberry Pi Spy Camera since it is able to see

the entire desired sensing surface. The camera is focused

and press-fit into the camera holder piece. M2 screws are

used to attach the camera housing to the sensor housing. An

outlet hole in the housing allows the LEDs to be connected

to the 5V/GND pins and the CSI cable for the camera to be

connected to the Raspberry Pi.

IV. SENSOR CALIBRATION FOR DEPTH MAP

GENERATION

Previous flat-surfaced, Lambertian-coated GelSight and

related sensors are calibrated by repeatedly pressing a ball

with known radius (around 2mm to 3mm) over the surface of

the sensor [1], [24]. After obtaining the pixel to millimeter

ratio in the sensor’s image, the horizontal and vertical gra-

dients (Gx and Gy) of the pixels in contact with the pressed

sphere can be calculated. A lookup table linearly mapping

the pixel’s color information and location to its gradient can

then be obtained. However, because of our sensor’s curved

shape and semi-specular coating, the same methods could not

be used. Romero et al. and Do et al. were able to reconstruct

the surface of their curved, non-Lambertian sensors using a

nonlinear function to map the pixel colors and locations to

their respective gradients using deep learning networks. We

implement methods similar to [1], [27], [34], [36] to obtain

the 3D reconstructions of the deformations on the sensor’s

surface.

Our calibration and reconstruction procedure consists of

the following steps: 1) Probing the entire surface of the

sensor with a 4mm sphere at known world coordinates to

obtain the pixel locations (u,v) and color intensities (RGB

values), 2) Using the sensor geometry and the known probing

locations to generate the approximate surface normals at

these points, and 3) Finding a continuous, nonlinear mapping

function using a multilayer-perceptron (MLP) network to

generate the gradients that can be used with the Fast Poisson

Solver.

A. Sensor Calibration

Since we aim to introduce a sensor utilizing a cross-

illumination structure capable of working for a variety of

shapes and sizes, our method relies on the accuracy of

the camera matrices, calibration probing locations, and 2D-

image to 3D-world-coordinate correspondences to accurately

generate the gradients of the probed contact region. Although

it is possible to use ray-casting methods and conversions to

spherical/cylindrical coordinate systems like in [27], [40],

we aim to present a generalized procedure that can be

implemented on a variety of all-around sensor shapes.
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Fig. 5. Depth reconstruction pipeline described in Section IV. The (u,v) image coordinates, along with the RGB values of the normalized difference image
of the contact area are input into an MLP to estimate the deformed surface gradients. The gradients are then input into a Fast Poisson Solver to generate
depth reconstructions. The MLP is trained using the rendered normals produced by probing the sensor with a 4mm sphere in known world coordinates.

1) CNC Calibration: To satisfy the requirements, we

use the CNC probing setup used in [34] since the high

positional accuracy of the machine will probe the sensor at

the desired coordinates. A mesh model of the sensor’s surface

in the real-world (whose offsets have been corrected due

to 3D printing tolerances in the sensor’s casing) is sampled

to choose N probing coordinates. The assembled sensor is

rigidly mounted to the base of the CNC, and a 3D-printed

probe with a 4mm calibration ball at its end travels to each

coordinate location and presses the ball into the surface of

the sensor. The camera located inside the sensor captures

the calibration ball’s impression at each of the N locations.

Our results use N = 10,000 probing coordinates, which takes

about 12 hours to collect.

2) 2D-image coordinates to 3D-world coordinates Cor-

respondence: In order to use an off-the-shelf rendering

software to generate the gradients of the sensor, we find the

camera’s intrinsic matrices, distortion coefficients, and pose

in the world coordinate frame. Before the sensor housing

is attached to the camera housing (as described in Section

III-E), the focused 160◦ FOV camera is calibrated using

OpenCV’s fisheye lens camera calibration procedure [41].

Using the intrinsic matrix and distortion coefficients, all of

the internal sensor images collected during the CNC probing

are undistorted. Next, 100 randomly sampled CNC probed

points of the sensor’s surface are used to find the camera’s

pose in the world coordinate frame. Although we have an

approximate estimate of the camera’s physical location in

space from the sensor assembly’s CAD model, the camera

pose with respect to the optical center is needed for accurate

normals generation. For each of the undistorted sampled

images, the minimum point of the indented sphere (the point

closest to the camera) is chosen in the image coordinates,

and the corresponding minimum point is chosen from a

point cloud that simulates the ball indenting into the sensor’s

surface. The camera extrinsic matrix is found using the

RANSAC PnP computation, and the camera pose in the

world coordinate frame is calculated.

3) Collecting Gradients and Contact ROI: Using the

camera matrices and sensor/calibration ball CAD models,

rendering software is used to estimate the intersection of the

two models. Here, we assume the ball is rigid and able to

fully penetrate the sensor’s surface since the elastomer itself

is only 1.75mm thick. The simulation serves two purposes:

1) To generate the internal Gx and Gy normals of the sensor’s

surface when probed with the calibration ball corresponding

to each pixel image point and 2) To generate a binary mask

of the ball’s contact region for collecting the desired pixel

coordinates and intensity values from the probed images.

Past GelSight works that used flat and curved surfaces

[1], [34] were able to use a Hough Circle Transform to

correctly isolate the contact regions of the probed ball during

calibration. However, since the distance from the camera to

the sensor surface can vastly vary due to the height of the

sensor, and the curvature or sloping of the sensor’s surface

can distort the circle, tuning the parameters to find the circles

proved to be unreliable. We therefore opted to generate

the contact region mask using the rendering software, as

it reliably provided accurate masks for the different sensor

shapes tested.

B. Normal Estimation with MLP

Finally, we use the mask to collect the coordinate locations

(u,v) and pixel intensities (RGB) of the areas in contact

with the calibration ball, along with their respective gradient

values (Gx, Gy). The continuous lookup table is implemented

with a multi-layer perceptron (MLP) network trained on the

contact region. As in [1], we balance the data by adding in

around 25% non-contact region data.

V. RESULTS

A. Different Sensor Geometries

The cross-illumination strategy is tested in the three ge-

ometries shown in Figure 6. With the exception of altering

the molds to produce the desired shapes and changing

the PCB board outlines, the overall manufacturing process

of different sensors remains the same. Additionally, slight

differences in resistor values and camera color gains are

necessary to obtain high quality color information since the

heights of the sensors differed (Note: between sensors of

the same size and shape, these values remained constant).

The raw RGB and difference images (see Figure 6) show

how the expected color directionality necessary to achieve
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Fig. 6. Examples of different sensor shapes manufactured using the cross-
illumination strategy described in Section III-B. The second row shows
example raw RGB images collected when an array of 3mm steel balls
is pressed into the surface of the sensor. The third row shows example
difference images, highlighting the directionality of the different LED
colors.

photometric stereo can uniformly be seen throughout most

of the sensor’s body.

We do note, however, that new designs may be somewhat

constrained to the focal length of the camera and diame-

ter of the camera lens. Because of the vertically-oriented

nature of our all-around sensor, the camera may not be

properly focused for the entire body of the sensor; building

a sensor whose tip is at a large distance from the camera

may impact the resolution of the tactile data. Therefore,

the camera’s optical characteristics should be considered

when customizing the sensors. Additionally, the types of

environments and tasks that the robot will be performing

should be taken into account. For example, tasks that require

the robot to utilize tactile information coming from the tip

of the sensor would benefit more from the cylindrical +

hemispherical configuration, since the surface area of the

sensor greatly decreases towards the ends of the fingers

in conical geometries. At the top of the conical sensors,

a large proportion of pixels providing data at the top of

the sensor are also occluded by the cross-LED structure,

lowering the visibility in this region. In tasks that require

digging, singulation, or rotational actions, sensing on the

sides of the fingers would be more advantageous, making the

conical shaped fingertips a better choice for the application.

B. Depth Map Reconstruction

Because of the sensor’s semi-specular aluminum coating

and the highly curved surface of the sensor, we implement a

continuous look-up-table using an MLP. When an unknown

object is pressed into the sensor, the network is used to

estimate the Gx and Gy values of the contact patch. These

values are fed into the Fast Poisson Solver to obtain an

approximate 3D depth map of the deformed contact region.

Fig. 7. Examples of tactile images collected when a variety of objects are
pressed into the sensor’s surface. The second column shows the raw RGB
image collected from the sensor. The third column shows the difference
image of the contact region of interest. Finally, the last column shows
the approximate depth map reconstruction after the calibration procedure
described in Section IV.

Figure 7 shows the depth maps produced from the algorithm

for a variety of objects being pressed into different quadrants

and heights on the spline shaped sensor. Though the entire

pipeline described in Section IV can be implemented for the

other shapes mentioned, we show the reconstructions of the

spline-shaped sensor, since its shape is unique to past omni-

directional sensors [27], [37], [40] and was predicted to be

difficult to obtain reconstructions from due to its shape and

more drastic non-uniformity in lighting when compared to

the other shapes tested.

Overall, the general shape and some details of the contact

areas of most small objects pressed into the sensor can

be seen, such as the threads of the M6 screw, the ridges

on the M6 heat insert, and even the letters in the logo

block. However, the accuracy of the reconstructed images

have shown to share some relationship with the location of

the contact area and the geometry of the object itself. In

general, more rounded objects whose contact location is not

locally linear tend to produce depth maps with less accuracy.

Additionally, areas closer to the top of the sensor, where

most of the directional colored light comes from only the

blue color channel, have a harder time estimating the Gx

gradients (due to the lack of red and green color), causing

somewhat warped reconstructions.

C. Occlusions and Un-Uniform Lighting

One drawback of using the cross-illumination strategy

is the inevitable visual occlusions that occur due to the

illuminating LED fins in the epoxy shell. Approximately

10% of the viable pixels in the undistorted image are blocked

by the LEDs. Even though the thinnest LEDs and boards

were used to produce the desired directional lighting scheme,

their obstructions to seeing the entire surface of the sensor
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are noted. Image A in Figure 8 shows an example of

the obstruction that occurs when a 3mm steel sphere is

pressed into the area of the surface adjacent to the lights.

As the contact areas get farther away from the camera, the

occlusions do slightly worsen. In cases where the object in

contact is larger than the width of the fins, we can assume

that the depth of the object is similar to areas fully visible

to the sensor, allowing us to interpolate depths along these

specific pixels, similar to the methods used in [1]

A possible source of error in the reconstructed depth

images is the lack of directional lighting occurring from

all three color channels towards the top of the sensor.

Throughout the base and mid-section of the sensor, the

independent directional lighting from the red, green, and

blue color channels can be distinctly observed (see Figure

7). However, as the light sources in the red and green

channel grow farther away and the camera’s sensor becomes

less sensitive to those wavelengths, the blue color channel

shinning directly upwards from the base of the sensor floods

the contact area, making it harder for the network to predict

the correct gradients. An example of this can be seen in

Image B of Figure 8, where a 3D-printed ring is placed

around the top of the sensor. This difference image shows

no red or green illumination.

Fig. 8. Examples of lighting and occlusion occurrences in the sensor.
(A) Example of the pixel occlusions that can occur due to the cross-
illumination strategy. The line of gray blocking out the center of the 3mm
calibration ball helps visualize the data lost due to the PCBs and LEDs. (B)

Difference image collected when a ring is pressed onto the top of the sensor.
The impression only exhibits directional light from the blue color channel,
causing issues in predicting the Gx gradients for depth reconstruction.

VI. CONCLUSION

In this work, we present an all-around tactile sensing

fingertip that implements a novel cross-illumination system

to achieve photometric stereo constraints and produce high

resolution depth reconstructions. In addition, we show that

this lighting scheme can be implemented in different sizes

and geometries without requiring intensive optical simula-

tion and experimentation previously required to manufacture

curved sensors. The sensor is calibrated by pressing a small

ball into known locations on the sensor’s surface, and the

gradients of the contact regions are rendered and input into

a neural network to learn the nonlinear function mapping the

image pixel’s location and color information to the gradients.

The surface normals are then fed into the Fast Poisson Solver

to produce depth maps of the object contact regions of the

surface. However, there are some pitfalls to the sensor, such

as occlusions caused by LEDs located in the sensor’s shell

and the lack of perfectly uniform lighting throughout the

sensor.

Future work includes reconfiguring the cross structure to

minimize occlusions and further increase uniform lighting,

studying methods of interpolating the depth over the oc-

cluded surfaces, adding force and other sensing modalities

to the sensors, and further assessing the advantages of

omnidirectional sensors in manipulation tasks. We also refer

readers to [42], for continued works employing GelSight360

sensors on a 3-fingered, 9 DOF robotic gripper [38] to

successfully complete an object retrieval task using only

tactile feedback. By introducing a generalizable design strat-

egy to easily manufacture and calibrate compact, all-around

tactile sensors in a variety of shapes and sizes, roboticists

can easily augment their systems with tactile feedback,

further improving a robot’s ability to successfully complete

assembly, exploration, or home-care tasks.
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