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Abstract: Manipulating clothing is challenging due to their complex, variable1

configurations and frequent self-occlusion. While prior systems often rely on2

flattening garments, humans routinely identify keypoints in highly crumpled and3

suspended states. We present a novel, task-agnostic, visuotactile framework that4

operates directly on crumpled clothing—including in-air configurations that have5

not been addressed before. Our approach combines global visual perception with6

local tactile feedback to enable robust, reactive manipulation. We train dense vi-7

sual descriptors on a custom simulated dataset using a distributional loss that cap-8

tures cloth symmetries and generates correspondence confidence estimates. These9

estimates guide a reactive state machine that dynamically selects between folding10

strategies based on perceptual uncertainty. In parallel, we train a visuotactile grasp11

affordance network using high-resolution tactile feedback to supervise grasp suc-12

cess. The same tactile classifier is used during execution for real-time grasp vali-13

dation. Together, these components enable a reactive, task-agnostic framework for14

in-air garment manipulation, including folding and hanging tasks. Moreover, our15

dense descriptors serve as a versatile intermediate representation for other plan-16

ning modalities, such as extracting grasp targets from human video demonstra-17

tions, paving the way for more generalizable and scalable garment manipulation.18

Keywords: Deformable Object Manipulation, Dense Correspondence Learning,19

Confidence-Aware Planning, Visuotactile Perception20
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Figure 1: Overview of visuotactile garment manipulation system. Our framework integrates
dense visual correspondence, visuotactile grasp affordance prediction, tactile grasp evaluation, and
tactile tensioning for manipulating garments in crumpled configurations, both on a table-top and
in-air. By leveraging a confidence-aware, reactive architecture and a task-agnostic representation,
the system supports a variety of manipulation tasks—including folding and hanging.
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1 Introduction21

Deformable object manipulation remains a major challenge in robotics, since strategies developed22

for rigid objects often fail to transfer. Deformable objects occupy infinite-dimensional configuration23

spaces and exhibit high model uncertainty, making accurate state estimation and dynamics prediction24

difficult. Although simulation-based models exist, they are typically computationally intensive and25

insufficiently inaccurate for real-time control. In this work, we focus on garment manipulation,26

where real-world complexities—such as self-occlusion, intra-class variation, and diverse material27

dynamics—further complicate perception and control.28

Existing approaches typically fall into two extremes: full-state estimation, which is expensive, or29

task-specific grasp predictors, which lack generalizability. To bridge this gap, we propose a pose-30

and instance-agnostic, confidence-aware representation using dense visual descriptors that estab-31

lishes pixel-wise correspondences between crumpled garments and canonical flat configurations.32

Trained on highly deformed states of detailed simulated shirts, our model can directly identify corre-33

spondences for shirts crumpled on a table and suspended in the air—a setting that, to our knowledge,34

has not been previously addressed.35

Instead of the traditional contrastive loss, we use a distributional loss that models garment symme-36

tries and produces confidence estimates for each correspondence. These confidence scores inform37

whether a keypoint should be grasped or deferred, which is critical for operating under severe occlu-38

sion. We integrate this representation into a visuotactile manipulation system, using high-resolution39

tactile sensing to (1) supervise grasp affordance learning, (2) validate grasp success during execu-40

tion, and (3) enable closed-loop tensioning during folding. These components work together within41

a reactive framework that adapts folding and hanging strategies to garments of varying geometries,42

without requiring full-state estimation or flattening.43

We make the following key technical contributions:44

• Parametrizable Simulator: A custom simulator with realistic hem features and parameterized45

variations to enable correspondences across different shirt geometries.46

• Dense Representation: Pixel-wise correspondences across challenging states using a distribu-47

tional loss to capture symmetries and provide confidence estimates.48

• Visuotactile Affordance: Grasp affordance network trained in simulation and fine-tuned using49

tactile supervision.50

• Cloth Manipulation System: A reactive visuotactile framework combining dense correspon-51

dences, affordances, and tactile sensing for confidence-aware in-air folding and hanging.52

2 Related Works53

Most previous cloth manipulation work focuses on task-specific pipelines, including flattening [1, 2],54

folding [3, 4, 5], dressing [6, 7], and recently hanging [8, 9, 10, 11]. These systems typically use55

incremental pick-and-place motions against a table [12, 13, 5, 14], and many focus on rectangular56

cloth, rather than garments.57

Learning-based approaches can be quite successful at specific tasks. Labeling a real-world de-58

formable object dataset is challenging [15, 9], so most learning works are trained in simulation.59

However, the sim2real gap remains a challenge—we address this for our grasp affordance network60

by extending [16], fine-tuning using tactile classifiers to determine grasp success on the robot. Be-61

havior cloning approaches [8] have shown impressive results on tasks like tying shoelaces and hang-62

ing shirts, but require thousands of expert teleoperated demonstrations per task. In contrast, our63

system enables one- or few-shot generalization abilities and can reuse a shared object-centric repre-64

sentation across tasks.65

Perception and Representation Early cloth manipulation work relies on corner detection or ridge66

detection [17] to determine grasp points [18]. However, finding other more specific local features67
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often requires first flattening the cloth [12, 19, 14, 1] or hanging it from specific grasp points [4, 20, 3]68

to avoid self-occlusion. Some works determine the global state of the cloth [21, 22, 23], but full-69

state inference is computationally expensive. In contrast, we use dense pixel-wise correspondences70

to directly localize task-relevant points in both crumpled table-top and in-air configurations.71

Dense Descriptors Dense visual descriptors have been used to learn pixel-level correspondences72

across object views [24, 25]. Florence et al. [26] introduce dense object descriptors for task-agnostic73

manipulation, with follow-up work applying them to deformable objects [5, 27, 28]. Prior cloth-74

specific applications use contrastive loss [5, 28], but Ganapathi et al. [29] use multimodal distri-75

butional loss [30] to model symmetry and uncertainty on ropes and square cloths. We extend this76

to garments, training on highly crumpled configurations and enabling in-air correspondence predic-77

tion—a capability not previously addressed. Our approach further differs from garment manipula-78

tion in [28] because of our use of reactive control, made possible by confidence-aware descriptors79

and tactile feedback. We also demonstrate that our dense descriptors can act as an intermediate rep-80

resentation for different planning modalities. For example, Huang et al. [31] uses DinoV2 [32] and81

a vision-language model to determine constraints; our descriptors could find keypoint candidates to82

better support manipulation in more crumpled states.83

3 Methods84

3.1 Dataset Generation in Simulation85

We use Blender 4.2 [33] to simulate a wide variety of shirt geometries and deformations, gener-86

ating a large RGB-D dataset (1500 scenes) for training. In addition to parameterizing the overall87

geometries, we use [34] to incorporate hems, stitches, and sewing seams into our shirts to mimic88

realistic garments, enhancing visual realism and providing key features helpful for correspondence.89

Our method incorporates these finer details while preserving consistent vertex indexing across shirts,90

enabling descriptors to align with a canonical template regardless of geometry, without relying on91

sparse skeleton keypoints as in [28]. Figure 2 shows some of the parameters and shirt configurations92

we randomize to generate our dataset.93

Scene generation mimics real-world camera setups, with three cameras arranged radially around the94

hanging shirt, with added pose noise and varied lighting conditions to enhance dataset diversity. For95

each hanging scene, a shirt is hung from a random mesh point and the world coordinates and pixel96

locations of the deformed mesh vertices are saved. For each table scene, a randomly positioned flat97

shirt is repeatedly grasped from random points and repositioned multiple times. This setup captures98

rich, diverse data across garment shapes, crumpled configurations (hanging and table), and visual99

contexts, enabling robust correspondence learning between different poses and shirt instances. See100

Appendix for further simulation details.101

Figure 2: Generating a simulated shirt dataset. Blender 4.2 is used to simulate deformed shirts.
Our animation pipeline allows flexibility in shirt geometries with the addition of realistic, key fea-
tures like seams and hems often found on real shirts. A consistent vertex indexing across the shirt
dataset is used, allowing alignment with a canonical template.
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3.2 Dense Correspondence with Distributive Loss102
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Figure 3: Training dense correspondence in simulation. Given two images Ia and Ib, and a
matching relation ((xa, ya) ←→ {(xb, yb), (x

′
b, y

′
b)}), we train a CNN model f to compute dense

object descriptors. When supervising with distributional loss, we define a multimodal Gaussian
target distribution qb with symmetrical modes over pixels corresponding to the queried point. We
compute the probability distribution estimation p̂bi over image Ib using f(Ia)[xa, ya] and f(Ib).
Training minimizes the KL divergence between qb and p̂bi . In the contrastive loss case, the model
learns to push discrete pixel matches closer together in pixel space and non-matches further apart.

We aim to learn dense pixel-wise correspondences between images of deformable objects in crum-103

pled and flattened configurations. Given an RGB image I ∈ RW×H×3, we define a mapping104

f : RW×H×3 → RW×H×d that assigns a d-dimensional descriptor to each pixel in I . This de-105

scriptor space allows correspondences to be established by comparing descriptors across images.106

Contrastive Loss Contrastive methods, as used by [26, 5, 28], supervise this mapping by sampling107

pairs of matching and non-matching pixels across images. For a query pixel ua = (xa, ya) in image108

Ia and a candidate pixel ub = (xb, yb) in image Ib, the descriptor distance D(Ia, ua, Ib, ub) =109

∥f(Ia)(ua)−f(Ib)(ub)∥2 is minimized for matching pairs and pushed apart for non-matching pairs.110

This enforces one-to-one correspondences but struggles with ambiguities caused by symmetries111

or occlusions, which are common in deformable objects. Symmetric Pixel-wise Contrastive Loss112

(SPCL) [29] extends this approach to support symmetric correspondences, allowing multiple valid113

matches per query pixel. However, they found the results to be unstable, and the discrete matches114

resulted in discontinuity issues. We will compare our network to these contrastive baselines.115

Distributional Loss To address these limitations, we adopt the distributional formulation from [29],116

which directly models uncertainty over correspondences. Instead of supervising individual descrip-117

tor pairs, the network predicts a full probability distribution over possible matches. Specifically, we118

define an estimator p̂b(xi, yj |Ia, Ib, xa, ya) that outputs the probability that each pixel (xi, yj) ∈ Ib119

corresponds to a given query pixel (xa, ya) ∈ Ia. This estimator is defined as:120

p̂b(xi, yj | Ia, Ib, xa, ya) =
exp

(
−∥f(Ia)[xa, ya]− f(Ib)[xi, yj ]∥22

)∑
i′,j′ exp (−∥f(Ia)[xa, ya]− f(Ib)[xi′ , yj′ ]∥22)

∀(xi, yj) ∈ Ib

(1)

The target distribution qb is a multimodal isotropic Gaussian defined over Ib, with standard deviation121

σ and modes centered at the ground-truth correspondence pixels, allowing the network to represent122

multiple valid matches and capture ambiguities from symmetry.123

The descriptor mapping f is implemented using ResNet34. The network is optimized by minimizing124

the Kullback-Leibler (KL) divergence between the predicted distribution p̂bi and the target distribu-125

tion qbi for each query pixel. Here, p̂bi is the predicted correspondence distribution over Ib for126

the i-th query pixel (computed using ??), and qbi is the corresponding target distribution. Figure 3127

shows a training example. At each iteration, we choose an image of a randomized crumpled shirt128

and compare it to the canonical one. We query 50 randomly sampled points on the crumpled shirt129

per iteration.130
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Note that Ib is always the canonical shirt image, meaning that we compute both the target and131

estimated distributions over the canonical shirt. A smooth Gaussian target distribution works over132

the canonical shirt because it does not have occlusions and distortions of the crumpled shirt. Defining133

the target distribution over the crumpled shirt would be useful for training the network in both134

directions, but is unfeasible in this framework.135

3.3 Visuotactile Grasp Affordance136

Training a general garment grasp affordance network is more challenging than for simpler de-137

formable objects like towels. In [16], the network was fine-tuned on a single towel with consis-138

tent material properties and dynamics. However, in this case, affordance must generalize across139

a wide range of geometries and material rigidities. As in [16], we only use side grasps to reduce140

computational complexity. While grasp classifiers are trained for both grippers (as required by the141

larger system), affordance training is performed only for right-arm grasps, with left-arm affordance142

approximated by horizontally flipping inputs and outputs.143

Tactile Classifier To assess grasp quality, we train tactile classifiers to distinguish between suc-144

cessful grasps, grasps with too little fabric (which are prone to slip), and grasps with excess layers145

(indicating more fabric than intended). We concatenate five evenly-spaced tactile depth images from146

the grasp attempt as input to our network. Our tactile datasets includes 350 grasps across approxi-147

mately 20 shirts, with limited augmentations (two per input).148

Training Affordance in Simulation We use the same U-Net [35] architecture as [16] for affordance149

prediction. The input to the network is a depth image of the hanging garment, and the output is an150

affordance heatmap over the image. Ground-truth affordance labels are computed per pixel via151

geometric analysis, leveraging full access to the cloth state in simulation. Specifically, each pixel152

is labeled based on gripper reachability, collision avoidance, and the number of fabric layers inside153

the gripper (restricted to two or fewer). These criteria are all explicitly checked in simulation, but154

the tactile classifier implicitly verifies these qualities on the robot. The simulated dataset consists of155

300 unique cloth configurations, each rotated in increments of 30◦, yielding a total of 3,600 images.156

Fine-tuning on the Robot We collect 8,500 grasp points for real-world fine-tuning to capture the157

greater variety of shirt dynamics and configurations compared to the simulated environment. Fine-158

tuning can easily overfit the real grasp dataset because the loss only applies to one pixel at a time.159

Furthermore, the tactile classifier cannot reliably determine whether the grasped region corresponds160

to the intended visual target. As a result, non-reachable pixels can yield positive tactile signals due161

to inadvertently grasping cloth in front of the target. To help address these challenges, our loss162

includes neighboring pixels to broaden supervision, along with regularization terms such as spatial163

smoothness penalties, simulation consistency constraints, and weight decay.164

3.4 System Setup165

Our bimanual system consists of two UR5 robots, both equipped with parallel-jaw grippers mounted166

with GelSight Wedge tactile sensors [36]. A Kinect Azure camera is used to capture RGB-D images.167

3.5 In-Air Garment Manipulation168

Folding with Confidence-Based State Machine Unlike prior garment folding approaches that rely169

on fixed canonical keypoints [5, 28] for folding on a table, our system enables reactive in-air folding170

by dynamically selecting grasp points based on real-time confidence estimates and recovering from171

failures using tactile reactivity. The system starts by picking the shirt up from the table (looking for172

high-confidence correspondence regions), and all subsequent grasps are performed in air.173

At each grasp attempt, the robot can query from three canonical regions (shoulder, sleeve, bottom)174

using our distributional dense correspondence network to generate confidence-weighted heatmaps.175

A grasp is executed only if both the correspondence confidence and grasp affordance (for hang-176

ing grasps) exceed predefined thresholds. Otherwise, the robot rotates the garment by 30◦ and re-177
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evaluates, ensuring robust grasp point selection across four folding strategies (shoulder-to-shoulder,178

bottom-to-bottom, sleeve-to-sleeve, sleeve-to-bottom) (See Appendix for details).179

Grasp success is validated by tactile sensing (confirming fabric contact). If a grasp fails, the robot180

rotates and retries without releasing the garment. We use vision to ensure that the cloth is still in181

grip after moving the grippers. If no pixel meets the threshold requirements, the robot grasps the182

lowest available high affordance point to change configurations and encourage the cloth to unfurl.183

Once two confident grasp points are secured, the robot tensions the shirt (detecting shear via marker184

tracking on tactile sensors) and performs the rest of the fold motions open-loop.185

Hanging We demonstrate hanging by picking collar or shoulder from the table and in the air. After186

securing both grasps, the robot moves open-loop to a peg. Hanging success is evaluated by grasp187

regions and whether the cloth stays on the peg.188

4 Results189
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Figure 4: (a) Cumulative pixel match error curves comparing contrastive and distributional
training, with and without symmetric supervision along with (b) illustrative example. The net-
works were trained on a combined dataset of hanging and table shirts and (a) shows performance on
an unseen hanging test set. Higher curves indicate better performance. For each network, we show
the predicted best pixel match for a queried point on a crumpled simulated shirt (b). We also provide
PCA visualizations of the dense descriptors in both the canonical and crumpled states, alongside the
corresponding match heatmaps. Note that contrastive heatmaps are normalized between 0 and 1 for
visualization, while distributional heatmaps represent true correspondence probabilities.

Dense Correspondence Most dense descriptor methods use contrastive one-to-one training [26, 5,190

28], which fails to capture symmetries or spatial relationships beyond binary matches. Quantitative191

results (Fig. 5) show similar cumulative pixel errors between contrastive and distributional models,192

but distributional models consistently outperform contrastive ones across nearly all error thresholds.193

Qualitatively, contrastive loss struggles ambiguous structures, often collapsing descriptors along the194

entire sleeve or confusing sleeves with the shirt bottom (as seen in PCA visualizations). In contrast,195

distributional loss supervises the model to predict a full probability distribution, enforcing spatial196

consistency. Explicit symmetry supervision further improves performance (Fig. 5), especially at197

low error thresholds, by encouraging multimodal correspondences in symmetric regions.198

We found that including occlusions during training did not significantly affect performance in simu-199

lation, but helped improve performance on real data, likely due to masking artifacts. More detailed200

analysis of network parameters can be found in the Appendix.201

On real robot hanging images, we evaluate our network by defining classification zones on the202

canonical shirt (see Appendix). When querying points from a crumpled hanging shirt (forward203

direction), the best hanging-only network classified the correct region 73.3% of the time, while the204

best combined network (trained on both table and hanging data) achieved 62.2% accuracy, while205

exhibiting lower overall confidence. Applying a confidence threshold, the combined network made206

correct, confidence-aware decisions (avoiding incorrect labels) 68.9% of the time. In the inverse207

direction (querying from the canonical shirt), the combined network correctly identified the region208

41.7% of the time and made safe, confidence-aware decisions 70.8% of the time. Some canonical209
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points were occluded in the crumpled image, making low confidence the correct outcome for these210

cases. On table scenes, the correct correspondence region was identified 70% of the time, and a safe211

decision—either correct or low-confidence—was made 80% of the time in 20 trials.212

Visuotactile Grasp Affordance Our tactile grasp classifier achieves 99.7% accuracy on the right213

arm (used for tactile supervision) and 98.8% on the left. Thin, flat shirts are the most challenging to214

classify. To evaluate affordance prediction, we collect 125 human-labeled grasp points where each215

point appeared potentially graspable to a human observer. We compare our fine-tuned affordance216

network against two baselines: (1) Sim2Real, trained in simulation and directly deployed, and (2)217

Real2Real, trained solely on robot data. Networks are evaluated offline using precision@k [37],218

a metric suitable for our unbalanced test set that avoids the need for a fixed threshold. We report219

precision@80, corresponding to the 80 successful grasps among the 125 test points. The results220

are 71.3% for Sim2Real, 75.0% for Real2Real, and 76.3% for our fine-tuned network. Sim2Real221

performs worst due to discrepancies between simulated and real-world dynamics. While the fine-222

tuned and Real2Real networks achieve similar precision, qualitative analysis shows that Real2Real223

tends to be overconfident in incorrect predictions, particularly in less ambiguous cases not well-224

represented in the test set (see Appendix).225

Combined System We evaluate grasping performance across four garment regions—sleeve, bot-226

tom, shoulder, and collar—using two networks: one trained solely on hanging data and another on227

a combined table and hanging dataset. For each category, we perform 10 grasp attempts per net-228

work, recording outcomes as success, failure, or below confidence threshold. Failures are further229

categorized as correspondence errors or affordance errors. In this experiment, we place the shirt230

in configurations where we expect graspable regions to emerge after rotation. Table 1 summarizes231

rates for overall success, correspondence success (excluding bad affordance grasps), low-confidence232

rates, and total failure rates for each network and region.233

The collar region consistently achieves higher confidence and success rates, likely due to its distinc-234

tive geometry. In contrast, the bottom region has the lowest confidence rates, reflecting its visual235

ambiguity and the increased difficulty of finding good affordance grasps from folding in on itself.236

The hanging network performs marginally better overall, but the combined network adds critical237

flexibility by supporting table grasps. Importantly, during folding, we query three candidate grasp238

points for the initial grasp, requiring confidence in only one to proceed. Subsequent grasps occur in239

easier, more unfurled configurations.240

Category
Successful
Grasp (%)

Corr.
Success (%)

Low
Conf. (%)

Failed
Grasp (%)

Hang Comb Hang Comb Hang Comb Hang Comb
Sleeve 60 40 80 60 10 10 30 50
Bottom 40 10 90 90 40 80 20 10

Shoulder 40 60 100 100 60 20 0 20
Collar 80 80 90 90 0 0 20 20

Table 1: Grasping results using dense correspondence and grasp affordance across shirt cat-
egories for hanging and combined (hanging + table) dataset networks. Low-confidence out-
comes, where the shirt completes a full rotation without finding a grasp point, are not counted as
successful or failed grasps. They are still included when calculating correspondence success, since
both networks are trained to be confidence-aware. Failed grasps are categorized as either correspon-
dence or affordance failures. Correspondence success rates exclude grasps that failed due to bad
affordance predictions.

We found that our confidence-aware state machine was able to grasp viable folding points in 6 out of241

10 trials. Irrecoverable failure modes included correspondence failures, grabbing too much fabric,242

and grabbing diagonally across the shirt for sleeve-end grasps (despite masking out lowest points,243

see Appendix). Cloth slipping out was an occasional issue, but the system is able to recover. Our244

hanging system was successful in 7 out of 10 trials with all failures due to correspondence.245
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Figure 5: Correspondence and affordance heatmaps for real images. We show examples for both
hanging and table configurations, with correspondence probability maps for four query types: sleeve,
shoulder, collar, and bottom. For hanging images, we also show the grasp affordance heatmap.
In the robot system, grasp points are selected where both correspondence and affordance exceed
predefined confidence thresholds. Note that while training queries points on the crumpled shirt, the
robot queries points on the canonical image.

5 Conclusion246

We present a reactive visuotactile system for garment manipulation that integrates dense visual cor-247

respondence, visuotactile grasp affordance, confidence-aware planning, and tactile feedback. Unlike248

prior work constrained to table-top picking or reliant on flattening, our system supports in-air gar-249

ment manipulation directly from crumpled states, guided by dense correspondences—a capability250

not previously demonstrated in the field. This enables more flexible, human-like manipulation.251

A core insight of our work is the importance of confidence-driven reactivity: by deferring low-252

confidence actions and using tactile sensing for validation and correction, the system maintains253

robustness under severe occlusion and uncertainty. This closed-loop approach bridges the gap be-254

tween global visual context and local contact feedback, enabling reliable control even when full255

object geometry is not observable.256

Beyond task execution, our dense, confidence-aware representation serves as a generalizable inter-257

mediate layer for higher-level planning frameworks. It provides a foundation for extracting grasp258

targets from human video demonstrations (Fig 6, See Appendix for details), and has the potential to259

interface with vision-language models [31] or symbolic planners. These directions open the door to260

scalable, semantically-informed manipulation systems capable of adapting across garments, tasks,261

and contexts.262

Query Point Probability Heatmap Best Match

Grasp 2

Query Point Probability Heatmap Best Match

Grasp 1

Figure 6: Extracting grasp points from human video demonstrations. We track hand gestures
throughout the video to identify key moments. For each key frame, we use the tracked hand position
to define a query point and retrieve the corresponding location on the canonical shirt using our
dense correspondence model. This approach enables folding demonstrations to be interpreted as
robot-executable instructions via our dense visual representation.
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6 Limitations263

While our system demonstrates strong potential for in-air garment manipulation, several areas264

present opportunities for further development. First, the generalizability of the dense correspon-265

dence network is limited by the features available in simulation. Although we incorporated realistic266

details such as seams, hems, and varied necklines, other common garment features—like hoods,267

buttons, zippers, and mixed patterns—are not yet modeled. Some of these could be added in future268

dataset expansions, while others may require advances in simulation tools. On out-of-distribution269

shirts (see Appendix), the network still captures general structure, but with lower confidence.270

Second, we are able to achieve this performance with a single camera and exclusively side approach271

grasps, but expanding to additional viewpoints and enabling more grasp approach angles could im-272

prove coverage to access more high correspondence regions. Incorporating temporal information273

could further enable the system to track keypoints as they become accessible, supporting more flex-274

ible planning.275

Finally, although the system is confidence-aware, the network occasionally overestimates its cer-276

tainty in challenging configurations. We experimented with auxiliary confidence prediction and277

KL-divergence metrics, but these did not significantly improve failure detection. Improving uncer-278

tainty estimation remains an important direction for future work.279
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7 Appendix385

7.1 Blender Simulation Parameters386

We provide additional details on the Blender scene setup and parameters used to generate our com-387

bined shirt dataset (including both hanging in-air and on-table configurations). The ratios of shirt388

features are selected to loosely reflect the distribution of shirts we test on the real system. Rendering389

50 scenes with these parameters takes 10 hours on an NVIDIA RTX 4090 GPU.390

Blender 4.2 Simulated Shirt Scene Dataset Parameters
Scene Parameters

Shirt Hanging in Air Scenes 1000 scenes
Shirt on Table Scenes 500 scenes
Cameras Rendered per Scene 3 cameras
Fabric Quality Steps 10
Render Quality 64

Shirt Parameters
Mesh Vertex Density 2922
Shirt Thickness 0.4 mm
Sleeve Length Ratio in Dataset 65% short sleeve, 35% long sleeve
Neck Type Ratio in Dataset 80% U-Neck, 20%V-Neck
Collar Hem Ratio in Dataset 80% collar hems, 20% without collar hems
Bottom Hem Ratio in Dataset 70% without bottom bodice hems, 30% bottom bodice hems
Shirt Stiffness Range Uniformly sampled between [7, 15]
Shirt Damping Range Uniformly sampled between [5, 7]

Table 2: Scene parameters used for dataset generation in Blender 4.2.

7.2 Folding with Confidence-Based State Machine391

We allow the robot to choose the most appropriate folding pick points based on which points it392

can confidently identify and grasp. Figure 7 shows the four different folding strategies (shoulder to393

shoulder, bottom to bottom, sleeve to sleeve, sleeve to bottom). Bottom refers to the bottom corner394

of the shirt, and sleeve refers to the bottom edge of the sleeve. The system starts by picking the shirt395

up from the table (looking for high-confidence correspondence regions), and all subsequent grasps396

are performed in air.397

At each grasp attempt, the robot can query from three canonical regions (shoulder, sleeve, bottom)398

using our distributional dense correspondence network to generate confidence-weighted heatmaps.399

A grasp is executed only if both the correspondence confidence and grasp affordance (for hanging400

grasps) exceed predefined thresholds. Grasp success is validated by our tactile classifier (confirming401

fabric contact). If no grasp is attempted or the grasp attempt fails, the robot rotates the garment by402

30◦ and re-evaluates. In cases where symmetry matters (e.g. grabbing the sleeve and end on same403

side of the shirt), we use the heuristic that the opposite corner features would be the lowest point, and404

therefore we mask out the bottom. If no pixel meets the threshold requirements, the robot grasps the405

lowest available high affordance point to change configurations and encourage the cloth to unfurl.406

The very first grasp attempt is done on the table. If no high correspondence point is found within the407

robot’s workspace, the robot’s fallback strategy is to grasp the highest point. All subsequent grasps408

are performed in air. The robot continues switching arms until it has two successful grasps.409
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Once the shirt is grasped by two keypoints, the robot pulls the shirt until it is tensioned. We use410

shear as measured by marker tracking on the tactile sensor as an indication for when the shirt is in411

tension. Then, the robot brings the lifted shirt to one end of the workspace, lowers it to the table,412

lowers the grippers to the other end of the table while resting half the shirt, then folds the shirt over413

as the grippers return to the first side of the workspace. The robot uses vision to align the corners in414

the final folding motion.415

Even with the confidence-based state machine, however, irrecoverable failure modes still occur.416

Figure 8 shows examples of these cases. Correspondence failures that result in grasps of internal417

points on the shirt (such as the body), grasping the correct feature but on the opposite side of the418

shirt, and grasping too many layers of fabric are some examples of failures that occur while folding.419

Recoverable failures include affordance failures leading to insufficient cloth in the grip and the cloth420

slipping out of the grip. Our tactile classifier informs the system if each grasp is successful. We use421

vision to ensure that the cloth is still in grip after moving the grippers.422

ü
No

Grasp Shoulder

Tension & Fold

Yes

ü
No

Grasp Sleeve

Yes

ü
No

Grasp Bottom

ü
No

Grasp Shoulder

Yes

ü Yes

ü

Grasp Sleeve

Yes

ü
No

Grasp Bottom

Yes

ü

Fallback

No

Figure 7: Confidence-based state machine for folding strategy. The robot dynamically chooses
between folding strategies based on which points are visible and graspable. The initial grasp occurs
on table, where the fallback strategy for low confidence is grasping the highest point. All subsequent
grasps are attempted in air. The robot only attempts a grasp if correspondence confidence and grasp
affordance exceed predefined thresholds. If no point is graspable, the robot rotates. If the robot
completes a full rotation, the new fallback option is grabbing the lowest graspable point to help
unfurl the cloth. Once two successful grasps are made, the robot tensions the cloth and folds.
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Figure 8: Irrecoverable Failure Modes of Folding. Though the confidence-based state machine
is able to recover from mistakes in folding, some cases are unaccounted for and irrecoverable in
the system. Incorrect correspondence grasps, picking the correct feature but on the wrong side, and
grasping too much cloth are some of the failure cases.

7.3 Dense Correspondence Network Parameters423

The mapping function f that generates the dense descriptor space is implemented as a 34-layer424

ResNet (pretrained on ImageNet) with a stride of 8 for computational efficiency (as in [26]). Bilinear425

upsampling is applied to the network’s feature maps to align the output descriptor maps with the426

input image size (540×960 pixels). We train each of our final networks for approximately 10,000427

iterations, which takes under 2 hours on an NVIDIA RTX 4090 GPU.428

Hyperparamter Tuning We conducted a series of hyperparameter experiments to optimize the per-429

formance of our dense correspondence network. A key parameter was the descriptor dimension d,430

which controls the capacity of the embedding space. As shown in Figure 9, we tested dimensions431

of 3, 9, 16, and 25. A descriptor size of d = 16 consistently outperformed smaller and larger al-432

ternatives, striking a balance between sufficient representational capacity and generalization. Lower433

dimensions (e.g., d = 3) lacked expressivity, while higher dimensions (e.g., d = 25) did not offer434

noticeable improvements and introduced potential overfitting. Additionally, larger networks require435

more computation time.436

We also evaluated the effect of σ, the standard deviation of the Gaussian used for the distributional437

loss target. Figure 10 shows performance across σ values of 1, 2, 10, and 20. While σ = 1 yielded438

sharper distributions and slightly better accuracy in simulation, we found that larger σ networks439

generalized better to real-world data. We hypothesize that broader Gaussians produce smoother gra-440

dients across the descriptor space, which in turn leads to more stable and consistent correspondence441

predictions. This smoothing effect could help mitigate sensitivity to local noise, masking artifacts,442

or out-of-distribution lighting. Sharper distributions (from smaller σ) can lead the network to overfit443

to high-frequency details in the simulated data, which don’t transfer well to real-world images.444

Model and Dataset Design Choices During early testing, we also experimented with several archi-445

tectural variations. We evaluated higher-resolution ResNets and a DINOv2 backbone for the map-446

ping function f , but found that DINOv2 performed significantly worse given our limited dataset447

size, and the higher-resolution ResNets did not yield noticeable improvements in correspondence448

accuracy. Additionally, our initial training dataset lacked hem and seam details, which led to poor449

differentiation between sleeve and torso ends when applied to real garments. Including these struc-450

tural details in later dataset versions improved real-world performance. To improve confidence451

estimation, we attempted to train a separate confidence head using the dense descriptor outputs as452

input; however, this approach did not reliably predict correspondence accuracy.453
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Figure 9: Cumulative pixel match error across different descriptor dimensions (d) evaluated
on the simulated test set. The network was trained on a combined dataset of hanging and table
shirts. A descriptor size of d = 16 provides the best trade-off between representational capacity and
generalization, outperforming both smaller (d = 3, d = 9) and larger (d = 25) dimensions.
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Figure 10: Cumulative pixel match error for different Gaussian σ values used in the distri-
butional loss target. The network was trained on a combined dataset of hanging and table shirts.
Smaller σ values (e.g., σ = 1) produce sharper distributions and yield slightly better accuracy in
simulation, but larger σ values improve generalization to real-world data by promoting smoother
gradients in the descriptor space.

We also experimented with incorporating depth information alongside RGB inputs but observed no454

significant gains. This suggests that in our cloth manipulation tasks, texture and color cues domi-455

nate the correspondence signal, and depth alone does not meaningfully contribute to distinguishing456

garment regions.457

We found that adding artificial occlusions to training images did not seem to impact performance458

with simulated images (Figure 11), suggesting that the network was robust to minor occlusions.459

However, training with occlusions significantly improved performance on real systems, likely due460

to masking artifacts.461

We compare performance of networks trained on exclusively hanging or table scenes to networks462

trained on a combined dataset (Figure 11, 12). The combined network performs marginally worse463

in both test sets compared to the specialized networks, but does not have significant performance464

loss. We found that simplifying table configurations during training to be more representative of465
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Figure 11: Cumulative pixel match error on hanging shirts for networks trained on hanging
and combined (hanging and table) datasets with and without occlusions. The networks all per-
form similarly in simulation, but we found that on real data, occlusions and the specialized hanging
network both performed better.
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Figure 12: Cumulative pixel match error on shirts on a table for networks trained on table,
hanging, and combined (hanging and table) datasets. As hypothesized, the specialty table net-
work performs the best, followed by the network trained with the combined dataset. The hanging
network is able to generalize its understanding to shirts on tables, but to a lesser degree of accuracy.

those used in related works was necessary for improving the combined network’s performance. The466

harder table training set had few distinguishing features, making correspondences more difficult to467

learn.468
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7.4 Dense Correspondence Evaluation469

We evaluate the real-world performance of our dense correspondence network using the color-coded470

regional classifications defined in Figure 13. In both folding and hanging scenarios, multiple grasp471

points can lead to the successful execution of a given strategy. Instead of requiring exact pixel-472

level matches, we divide the shirt into five regions and consider a trial successful if the network’s473

high-confidence grasp prediction falls within the correct region on the physical shirt.474

Figure 13: Shirt region classification used for real-world evaluation. During real-world evalua-
tion of the dense correspondence network, a predicted grasp is considered correct if it falls within
the same region as the predefined, ground-truth label.

We use a confidence threshold of 6 × 10−6 across networks, selected based on qualitative inspec-475

tion of confidence outputs. Individual pixel confidences peak at approximately 9 × 10−6. Low476

confidence classifications are considered incorrect, but safe. To test in the forward direction (query-477

ing on the deformed shirt), we label query points while collecting images. In the inverse direction478

(querying from the canonical), we query collar, shoulder, sleeve, and bottom points and visualize479

high confidence matches across all images in the dataset. Points that can be verified or rejected by a480

human are included in evaluation. Note that not every point is visible in the inverse queries, making481

low-confidence the ideal option.482

We evaluate the accuracy of our dense correspondence network—trained on the combined hang-483

ing in-air and table configurations—when picking from the table by determining whether the high-484

confidence first grasp point the system chooses is within the appropriate region, as defined in Fig-485

ure 13. We conduct 20 trials to evaluate the network’s correspondence prediction success. The486

configurations of the shirt when picked from the table demonstrate a similar, if not more difficult,487

deformation as in [5] and [28]. Our method shows a comparable success rate to prior works, with488

the added capability of choosing grasp points from a highly deformed shirt hanging in air.489

The dataset simulated in Blender offers much flexibility in rendering a wide range of shirt geometries490

and details, including variations in body and sleeve length and shirt details. However, features such491

as hoods, turtleneck collars, buttons, and sleeveless shirts are not simulated. We assess our dense492

object network’s zero-shot generalization capabilities to out-of-distribution shirts in the inverse di-493

rection. Notably, previously unseen visual features such as hoods, turtlenecks, and button-up collars494

do not seem to degrade the network’s ability to distinguish the collar regions from the sleeves or495

bottoms of the shirts. Similarly, color-blocked patterns and buttons do not confuse the network,496

likely due to the wide range of textures and colors present in the simulated training data. Occasional497

misclassifications occur with sleeveless shirts and vests, where the network incorrectly predicts the498

shirt bottom as a sleeve when queried from the canonical shirt. We note, however, this error is499

also observed in some in-distribution examples. Overall, despite the unseen shirt types, our net-500
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work demonstrates a general visual understanding of the shirt structure and effectively generalizes501

to styles beyond those seen in training. See Figure 14 for examples.502

Figure 14: Examples of out-of-distribution shirts tested. We assess the zero-shot out-of-
distribution generalization capabilities of our network by testing its predictions in the inverse di-
rection on unseen shirt styles. In general, features such as hoods, turtleneck collars, and buttons not
present in the simulated training dataset do not degrade the network’s performance, as it is still able
to classify shirt features accurately. Some misclassifications do occur with sleeveless shirts, as the
network predicts the bottom of the shirt as the end of the sleeve. Overall, the network successfully
generalizes to previously unseen shirt styles, demonstrating a visual understanding of the shirt struc-
ture.

7.5 Visuotactile Grasp Affordance503

Depth 
Image

Grasp 
Affordance

Side Grasp 
Reachability MultilayerGripper 

CollisionSimulated Shirt

Figure 15: Visuotactile grasp affordance training in simulation. We generate affordance labels
for entire images in simulation by evaluating grasp feasibility based on reachability with a side grasp,
collision avoidance, and fabric layer count (restricted to two or fewer). We adapt the affordance data
generation pipeline introduced in [16] to our simulation environment to obtain the affordance labels.

We compute per-pixel grasp affordance labels in simulation using an adapted version of the method504

from [16]. In our case, the goal is to identify viable side grasps for grasping shirts rather than edge505

grasps for towels, so we modify the criteria accordingly. Specifically, we remove the edge constraint506

used in the original formulation and allow up to two fabric layers instead of one. Affordance labels507

are computed by evaluating whether a candidate grasp point (1) is reachable by the right arm, (2)508
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avoids collision with the cloth during the approach, and (3) results in no more than two layers of509

fabric between the gripper fingers. Figure 15 shows examples of the resulting simulation affordance510

labels. The network took under 2 hours to train on the simulated network on a Titan X Pascal GPU.511

Collecting 8000 grasps on the robot supervised with our tactile classifier took approximately 14512

hours. Figure 16 compares affordance predictions from networks trained in simulation and on real513

robot grasps.514

Figure 16: Fine-tuned visuotactile grasp affordance compared to baselines. The model
trained in simulation (left, Sim2Real) is overly conservative, often failing to identify viable grasp
points—particularly near the bottom of the shirt. In contrast, the model trained only on real robot
grasps (middle, Real2Real) is overconfident in unexplored regions and is sensitive to misclassified
grasps where the robot contacts fabric inside the shirt, rather than the intended target region, without
regularization from the network trained in simulation.

7.6 Human Video Demonstrations515

In order to extract grasp points from human video demonstrations, we trained a custom gesture516

recognizer based on MediaPipe’s GestureRecognizer framework. This network allows us to track517

transitions between open and grasping hands and tracks the hand skeleton. We identify grasp events518

as frames in which both hands are in a grasping pose, and extract the first frame of these segments519

as key frames. The index fingertip of the lower hand is then used as a query point for our dense cor-520

respondence model to localize the intended grasp location on a canonical garment image (Figure 6).521

We apply a Segment Anything-based mask [38] to isolate the garment in the demonstration image.522

While the full pipeline enables generalization across different users and environments, its success523

rate is currently limited. The gesture recognizer can misclassify ambiguous hand poses and the524

off-the-shelf skeleton tracker occasionally fails to accurately localize the hands. Additionally, the525

dense correspondence model struggles in frames where the hand occludes the target grasp point. To526
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mitigate occlusion, we select a frame a few steps prior to the grasp, but in many cases, the cloth527

shifts between these frames, leading to inaccurate grasp localization. This pipeline is outside of the528

primary focus of our work, but rather a demonstration of the potential for using dense descriptors to529

interface with unconstrained human video data. With more focused development, these limitations530

could likely be addressed—for example, by training a more robust, domain-specific gesture recog-531

nizer or incorporating occlusion-aware correspondence networks. Despite its current limitations,532

this approach illustrates how our descriptor representation enables pick point extraction directly533

from raw demonstrations—a key step toward scaling data collection for garment manipulation.534
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